ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На координатной плоскости xOy построена парабола y = x². Затем начало координат и оси стёрли. а) Торт имеет форму треугольника, в котором один угол в 3 раза больше другого. Коробка для торта имеет форму того же треугольника, но симметрична ему относительно некоторой прямой. Как разрезать торт на две части, которые можно будет (не переворачивая) уложить в эту коробку? б) Та же задача для торта в форме тупоугольного треугольника, в котором тупой угол в 2 раза больше одного из острых углов. В магазине в ряд висят 21 белая и 21 фиолетовая рубашка. Найдите такое минимальное k, что при любом изначальном порядке рубашек можно снять k белых и k фиолетовых рубашек так, чтобы оставшиеся белые рубашки висели подряд и оставшиеся фиолетовые рубашки тоже висели подряд. За круглым столом сидят 40 человек. Может ли случиться, что у каждых двух из них, между которыми сидит чётное число человек, есть за столом общий знакомый, а у каждых двух, между которыми сидит нечётное число человек, общего знакомого нет? Трапеция ABCD с основаниями AB и CD вписана в окружность Ω. Окружность ω проходит через точки C, D и пересекает отрезки CA, CB в точках A1, B1 соответственно. Точки A2 и B2 симметричны точкам A1 и B1 относительно середин отрезков CA и CB соответственно. Докажите, что точки A, B, A2 и B2 лежат на одной окружности. а) Докажите, что для любого многочлена f(x) степени n существует единственное представление его в виде б) Докажите, что коэффициенты d0, d1, ..., dn в этом представлении вычисляются по формуле dk = Δkf(0) (0 ≤ k ≤ n). В таблице n×n разрешается добавить ко всем числам любого несамопересекающегося замкнутого маршрута ладьи по 1. В первоначальной таблице по диагонали стояли единицы, а остальные были нули. Можно ли с помощью нескольких разрешённых преобразований добиться того, что все числа в таблице станут равны? (Считается, что ладья побывала во всех клетках таблицы, через которые проходит её путь.) Кривая 4p³ + 27q² = 0 на фазовой плоскости Opq называется дискриминантной кривой уравнения x³ + px + q = 0. Прямые ap + q + a³ = 0, соответствующие трёхчленам, имеющим корень a, называются корневыми. Каково взаимное расположение на фазовой плоскости Opq дискриминантной кривой и корневых прямых? Имеют ли они общие точки, и, если имеют, то сколько? а) Пусть P — точка пересечения прямых AB и A1B1.
Докажите, что если среди точек A, B, A1, B1 и P нет
совпадающих, то общая точка описанных окружностей треугольников PAA1
и PBB1 является центром поворотной гомотетии, переводящей точку A
в A1, а точку B в B1, причем такая поворотная гомотетия
единственна.
Докажите, что
20Rr - 4r2 Длины двух сторон треугольника равны a, а длина третьей стороны равна b. Вычислите радиус его описанной окружности. Стозначное натуральное число n назовём необычным, если десятичная запись числа n³ заканчивается на n, а десятичная запись числа n² не заканчивается на n. Докажите, что существует не менее двух стозначных необычных чисел. |
Задача 64627
УсловиеСтозначное натуральное число n назовём необычным, если десятичная запись числа n³ заканчивается на n, а десятичная запись числа n² не заканчивается на n. Докажите, что существует не менее двух стозначных необычных чисел. РешениеНапример, такими числами являются n1 = 10100 – 1 = 99...9 и n2 = 5·1099 – 1. Действительно, числа ЗамечанияСуществуют и другие необычные стозначные числа. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке