ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Вершины треугольника $DEF$ лежат на разных сторонах треугольника $ABC$. Касательные, проведенные из центра вписанной в треугольник $DEF$ окружности к вневписанным окружностям треугольника $ABC$, равны. Докажите, что $4S_{DEF} \ge S_{ABC}$. Биссектриса одного из острых углов прямоугольного треугольника высотой, опущенной на гипотенузу, делится на отрезки, отношение которых равно Известно, что "медные" монеты достоинством в 1, 2, 3, 5 коп. весят соответственно 1, 2, 3, 5 г. Среди четырех "медных" монет (по одной каждого достоинства) есть одна бракованная, отличающаяся весом от нормальной. Как с помощью взвешиваний на чашечных весах без гирь определить бракованную монету? Дан треугольник $ABC$. Пусть $I$ – центр вневписанной окружности, касающейся стороны $AB$, а $A_1$ и $B_1$ – точки касания двух других вневписанных окружностей со сторонами $BC$ и $AC$ соответственно. Пусть $M$ – середина отрезка $IC$, а отрезки $AA_1$ и $BB_1$ пересекаются в точке $N$. Докажите, что точки $N$, $B_1$, $A$ и $M$ лежат на одной окружности. Четырёхугольник ABCD вписан в окружность. Диагональ AC является биссектрисой угла BAD и пересекается с диагональю BD в точке K. Из точки A на биссектрисе угла с вершиной L опущены перпендикуляры AK и AM на стороны угла. На отрезке KM взята точка P (K лежит между Q и L), а прямую ML – в точке S. Известно, что ∠KLM = α, KM = a, QS = b. Найдите KQ. Докажите, что в любом неравнобедренном треугольнике биссектриса лежит между медианой и высотой, проведёнными из той же вершины. Основание треугольника равно 36. Прямая, параллельная основанию, делит площадь треугольника пополам. В треугольник вписан ромб так, что один угол у них общий, а противоположная вершина делит сторону треугольника в отношении 2 : 3. Диагонали ромба равны m и n. Найдите стороны треугольника, содержащие стороны ромба. В ряд лежат 100 внешне одинаковых монет. Среди них ровно 26 фальшивых, причём они лежат подряд. Настоящие монеты весят одинаково, фальшивые – не обязательно одинаково, но они легче настоящих. Как за одно взвешивание на двухчашечных весах без гирь найти хотя бы одну фальшивую монету? У продавца имеются чашечные весы с неравными плечами и гири. Сначала он взвешивает товар на одной чашке, затем – на другой и берёт средний вес. Не обманывает ли он? В треугольнике $ABC$ $I$ – центр вписанной окружности, вневписанная окружность с центром $I_A$ касается стороны $BC$ в точке $A'$. Через $I$ проведена прямая $l\perp BI$. Оказалось, что $l$ пересекает $I_AA'$ в точке $K$, лежащей на средней линии, параллельной $BC$. Докажите, что $\angle B\leq 60^{\circ}$. Точка касания вневписанной окружности со стороной треугольника и основание высоты, проведённой к этой стороне, симметричны относительно основания биссектрисы, проведённой к этой же стороне. Докажите, что эта сторона составляет треть периметра треугольника. |
Задача 64986
УсловиеТочка касания вневписанной окружности со стороной треугольника и основание высоты, проведённой к этой стороне, симметричны относительно основания биссектрисы, проведённой к этой же стороне. Докажите, что эта сторона составляет треть периметра треугольника. РешениеИз условия следует, что радиус rc вневписанной окружности, касающейся стороны AB треугольника ABC, равен высоте hc, проведённой к этой стороне. Поскольку площадь треугольника S = (p – c)rc = ½ chc, то c = 2(p – c), то есть c = 2p/3. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке