Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

Дан треугольник площади 1 со сторонами  a $ \leq$ b $ \leq$ c. Докажите, что  b $ \geq$ $ \sqrt{2}$.

Вниз   Решение


Внутри выпуклого n-угольника A1A2...An взята точка O так, что $ \overrightarrow{OA_1}$ +...+ $ \overrightarrow{OA_n}$ = $ \overrightarrow{0}$. Пусть d = OA1 +...+ OAn. Докажите, что периметр многоугольника не меньше 4d /n при n четном и не меньше 4dn/(n2 - 1) при n нечетном.

ВверхВниз   Решение


Приведите пример девятизначного натурального числа, которое делится на 2, если зачеркнуть вторую (слева) цифру, на 3 — если зачеркнуть в исходном числе третью цифру, ..., делится на 9, если в исходном числе зачеркнуть девятую цифру.

ВверхВниз   Решение


Квадрат $10\times10$ клеток надо покрыть полосками $1\times9$ клеток. Сделайте это так, чтобы каждая клетка была покрыта одной или двумя полосками, но никакой прямоугольник $1\times2$ не был покрыт в два слоя. (Полоски кладут по линиям сетки горизонтально или вертикально, полоски не должны выходить за границу квадрата.)

ВверхВниз   Решение


Найдите трехзначное число, которое представимо в виде суммы и двух, и трех, и четырех, и пяти, и шести квадратов различных натуральных чисел. Достаточно привести один пример.

ВверхВниз   Решение


Известно, что в кадр фотоаппарата, расположенного в точке O, не могут попасть предметы A и B такие, что угол AOB больше 179o. На плоскости поставлено 1000 таких фотоаппаратов. Одновременно каждым фотоаппаратом делают по одному снимку. Доказать, что найдётся снимок, на котором сфотографировано не больше 998 фотоаппаратов.

ВверхВниз   Решение


а) Найдите сумму всех трёхзначных чисел, которые можно записать с помощью цифр 1, 2, 3, 4 (цифры могут повторяться).
б) Найдите сумму всех семизначных чисел, которые можно получить всевозможными перестановками цифр 1, ..., 7.

ВверхВниз   Решение


Существует ли треугольник, в котором одна сторона равна какой-то из его высот, другая – какой-то из биссектрис, а третья – какой-то из медиан?

Вверх   Решение

Задача 65002
Темы:    [ Отрезок внутри треугольника меньше наибольшей стороны ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 3
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Существует ли треугольник, в котором одна сторона равна какой-то из его высот, другая – какой-то из биссектрис, а третья – какой-то из медиан?


Решение

Любой отрезок, соединяющий вершину треугольника с точкой на противоположной стороне, короче, по крайней мере, одной из двух других сторон. Поэтому любая медиана или биссектриса короче хотя бы одной из сторон и, тем самым, короче наибольшей стороны. Это же верно для высот.


Ответ

Не существует.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2010
тур
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .