Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

Докажите, что для любых положительных чисел x и y справедливо неравенство  

Вниз   Решение


Сколько существует шестизначных чисел, в записи которых есть хотя бы одна чётная цифра?

ВверхВниз   Решение


Продолжения боковых сторон $AB$ и $CD$ трапеции $ABCD$ ($AD > BC$) пересекаются в точке $P$. На отрезке $AD$ нашлась такая точка $Q$, что $BQ=CQ$. Докажите, что линия центров окружностей, описанных около треугольников $AQC$ и $BQD$, перпендикулярна прямой $PQ$.

ВверхВниз   Решение


Средняя линия, параллельная стороне $AC$ треугольника $ABC$, пересекает его описанную окружность в точках $X$ и $Y$. Пусть $I$ – центр вписанной окружности треугольника $ABC$, а $D$ – середина дуги $AC$, не содержащей точку $B$. На отрезке $DI$ отметили точку $L$ такую, что $DL=BI/2$. Докажите, что из точек $X$ и $Y$ отрезок $IL$ виден под равными углами.

ВверхВниз   Решение


Человек имеет шесть друзей и в течение пяти дней приглашает к себе в гости каких-то троих из них так, чтобы компания ни разу не повторялась.
Сколькими способами он может это сделать?

ВверхВниз   Решение


Пусть $BH$ – высота прямоугольного треугольника $ABC$ $(\angle B=90^{\circ})$. Вневписанная окружность треугольника $ABH$, противолежащая вершине $B$, касается прямой $AB$ в точке $A_{1}$; аналогично определяется точка $C_{1}$. Докажите, что $AC\parallel A_{1}C_{1}$.

ВверхВниз   Решение


В вершинах правильных многоугольников записываются числа 1 и 2. Сколько существует таких многоугольников, что сумма чисел, стоящих в вершинах, равна n ( n $ \geqslant$ 3)? Две расстановки чисел, которые можно совместить поворотом, не отождествляются.

ВверхВниз   Решение


Автор: Шанин И.А.

На кольцо свободно нанизано 2009 бусинок. За один ход любую бусинку можно передвинуть так, чтобы она оказалась ровно посередине между двумя соседними. Существуют ли такие изначальная расстановка бусинок и последовательность ходов, при которых какая-то бусинка пройдёт хотя бы один полный круг?

ВверхВниз   Решение


Автор: Фольклор

Докажите, что для произвольных a, b, с равенство     выполнено тогда и только тогда, когда выполнено равенство   .

Вверх   Решение

Задача 65082
Тема:    [ Тождественные преобразования ]
Сложность: 4-
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Автор: Фольклор

Докажите, что для произвольных a, b, с равенство     выполнено тогда и только тогда, когда выполнено равенство   .


Решение

  Нетрудно проверить, что     (*).
Поэтому если   ,   то и   .
  Обратно, пусть   .   При  a + b + c ≠ 0,  равенство     сразу получается из равенства (*). Если же  a + b + c = 0,  то   .

Источники и прецеденты использования

олимпиада
Название Олимпиада имени Леонарда Эйлера (для 8 классов)
год/номер
Номер 2 (2010)
тур
задача
Номер 7

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .