Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 11 задач
Версия для печати
Убрать все задачи

Правильный многоугольник  A1...An вписан в окружность радиуса R с центром O, X — произвольная точка.
Докажите, что   A1X² + ... + AnX² = n(R² + d²),  где  d = OX.

Вниз   Решение



Основания трапеции равны 8 и 2. Углы, прилежащие к большему основанию, равны по 45o. Найдите объем тела, образованного вращением трапеции вокруг большего основания.

ВверхВниз   Решение


Проанализируйте при помощи ним-сумм игру ``Йога'' из задачи 4.21.

ВверхВниз   Решение


Найдите остаток от деления 31989 на 7.

ВверхВниз   Решение


Биссектрисы AA1 и CC1 треугольника ABC пересекаются в точке I. Описанные окружности треугольников AIC1 и CIA1 повторно пересекают дуги AC и BC (не содержащие точек B и A соответственно) описанной окружности треугольника ABC в точках C2 и A2 соответственно. Докажите, что прямые A1A2 и C1C2 пересекаются на описанной окружности треугольника ABC.

ВверхВниз   Решение


Докажите, что при любых k и l многочлен gk,l(x) является возвратным, то есть  
(Определение многочленов Гаусса см. здесь.)

ВверхВниз   Решение


В каждой вершине выпуклого k-угольника находится охотник, вооруженный лазерным ружьем. Все охотники одновременно выстрелили в зайца, сидящего в точке O внутри этого k-угольника. В момент выстрела заяц пригибается, и все охотники погибают. Доказать, что нет другой точки, кроме O, обладающей указанным свойством.

ВверхВниз   Решение


Решить уравнение  x8 + 4x4 + x² + 1 = 0.

ВверхВниз   Решение


Из бумаги склеено цилиндрическое кольцо, ширина которого равна 1, а длина по окружности равна 4. Можно ли не разрывая сложить это кольцо так, чтобы получился квадрат площади 2?

ВверхВниз   Решение


Дано изображение (параллельная проекция на некоторую плоскость) треугольника и центра описанной около него окружности. Постройте изображение точки пересечения высот этого треугольника.

ВверхВниз   Решение


Автор: Жуков Г.

По кругу записывают 2015 натуральных чисел так, чтобы каждые два соседних числа различались на их наибольший общий делитель.
Найдите наибольшее натуральное N, на которое гарантированно будет делиться произведение этих 2015 чисел.

Вверх   Решение

Задача 65157
Темы:    [ НОД и НОК. Взаимная простота ]
[ Четность и нечетность ]
[ Арифметика остатков (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы:
Из корзины
Прислать комментарий

Условие

Автор: Жуков Г.

По кругу записывают 2015 натуральных чисел так, чтобы каждые два соседних числа различались на их наибольший общий делитель.
Найдите наибольшее натуральное N, на которое гарантированно будет делиться произведение этих 2015 чисел.


Решение

  Оценка. Два нечётных числа не могут стоять рядом, так как они не делятся на свою чётную разность. Поэтому чётных чисел не меньше половины, то есть хотя бы 1008. Так как их больше половины, то какие-то два чётных числа стоят рядом. Из этой пары чётных чисел хотя бы одно кратно 4, иначе их разность кратна 4, а сами они – нет.
  Предположим, у нас нет чисел, кратных 3. Тогда, из-за нечётности количества чисел, какие-то два соседних числа дают одинаковые остатки при делении на 3. Эти числа делятся на свою разность, которая кратна 3. Противоречие.
  Следовательно,  N ≥ 3·21009.
  Пример. Числа 4, 3, 2, 1, 2, 1, ..., 2, 1, 2 удовлетворяют условию. Их произведение равно 3·21009.


Ответ

N = 3·21009.

Замечания

1. Пример единственный.

2. 5 баллов.

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 36
Дата 2014/15
вариант
1
Вариант весенний тур, базовый вариант, 10-11 класс
задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .