Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 11 задач
Версия для печати
Убрать все задачи

Можно ли целые числа от 1 до 2004 расставить в некотором порядке так, чтобы сумма каждых десяти подряд стоящих чисел делилась на 10?

Вниз   Решение


Докажите, что медиана разбивает треугольник на два равновеликих треугольника.

ВверхВниз   Решение


Имеется несколько городов, некоторые из них соединены автобусными маршрутами (без остановок в пути). Из каждого города можно проехать в любой другой (возможно, с пересадками). Иванов купил по одному билету на каждый маршрут (то есть может проехать по нему один раз всё равно в какую сторону). Петров купил n билетов на каждый маршрут. Иванов и Петров выехали из города A. Иванов использовал все свои билеты, новых не покупал и оказался в другом городе B. Петров некоторое время ездил по купленным билетам, оказался в городе X и не может из него выехать, не купив новый билет. Докажите, что X – это либо A, либо B

ВверхВниз   Решение


Дан треугольник ABC. Найти такую точку, что если её симметрично отразить от любой стороны треугольника, то она попадает на описанную окружность.

ВверхВниз   Решение


Автор: Фольклор

Существует ли многогранник (не обязательно выпуклый), полных список рёбер которого имеет вид: AB, AC, BC, BD, CD, DE, EF, EG, FG, FH, GH, AH (на рисунке приведена схема соединения рёбер)?

ВверхВниз   Решение


Рассеянный Ученый сконструировал прибор, состоящий из датчика и передатчика. Средний срок (математическое ожидание) службы датчика 3 года, средний срок службы передатчика 5 лет. Зная распределения срока службы датчика и передатчика, Рассеянный Ученый вычислил, что средний срок службы всего прибора равен 3 года 8 месяцев. Не ошибся ли Рассеянный Ученый в своих расчетах?

ВверхВниз   Решение


На сторонах треугольника ABC внешним (внутренним) образом построены правильные треугольники ABC1, AB1C и A1BC. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке. Найдите трилинейные координаты этой точки.

ВверхВниз   Решение


Даны три неотрицательных числа a, b, c. Про них известно, что   a4 + b4 + c4 ≤ 2(a²b² + b²c² + c²a²).
  а) Докажите, что каждое из них не больше суммы двух других.
  б) Докажите, что   a² + b² + c² ≤ 2(ab + bc + ca).
  в) Следует ли из неравенства пункта б) исходное неравенство?

ВверхВниз   Решение


Автор: Иванов В.

  а) Вершины правильного 10-угольника закрашены чёрной и белой краской через одну. Двое играют в следующую игру. Каждый по очереди проводит отрезок, соединяющий вершины одинакового цвета. Эти отрезки не должны иметь общих точек (даже концов) с проведенными ранее. Побеждает тот, кто сделал последний ход. Кто выигрывает при правильной игре: начинающий игру или его партнер?
  б) Тот же вопрос для 12-угольника.

ВверхВниз   Решение


Пусть α, β и γ - углы треугольника ABC. Докажите, что
а)  ctg$ \alpha$ + ctg$ \beta$ + ctg$ \gamma$ = (a2 + b2 + c2)/4S;
б)  a2ctg$ \alpha$ + b2ctg$ \beta$ + c2ctg$ \gamma$ = 4S.

ВверхВниз   Решение


Верхняя сторона бумажного квадрата белая, а нижняя – красная. В квадрате случайным образом выбирается точка F. Затем квадрат сгибают так, чтобы одна случайно выбранная вершина наложилась на точку F. Найдите математическое ожидание числа сторон появившегося красного многоугольника.

Вверх   Решение

Задача 65305
Темы:    [ Непрерывное распределение ]
[ Средние величины ]
[ Площадь круга, сектора и сегмента ]
Сложность: 3+
Классы: 8,9,10,11
Из корзины
Прислать комментарий

Условие

Верхняя сторона бумажного квадрата белая, а нижняя – красная. В квадрате случайным образом выбирается точка F. Затем квадрат сгибают так, чтобы одна случайно выбранная вершина наложилась на точку F. Найдите математическое ожидание числа сторон появившегося красного многоугольника.


Решение

  Результат зависит только от взаимного положения точки F и выбранной вершины. Поэтому можно считать, что вершина фиксирована (пусть это будет вершина A), а точка F выбирается случайно.

  Если точка F принадлежит оранжевому двуугольнику, то в результате сложения получится треугольник (серединный перпендикуляр к отрезку AF пересечёт одну из сторон AD или BC), а если точка F вне двуугольника, в серой области, то будет четырёхугольник.
  Если считать, что площадь квадрата равна 1, то вероятности Pg и Po попадания точки F соответственно в серую и оранжевую области равны площадям этих областей:  Pg = 2(1 – π/4) = 2 – π/2,  Po = 1 – Pg = π/2 – 1.
  Итак, математическое ожидание равно  3Po + 4Pg = 3(π/2 – 1) + 4(2 – π/2) = 5 – π/2 ≈ 3,429.


Ответ

5 – π/2 ≈ 3,429.

Источники и прецеденты использования

олимпиада
Название Заочная олимпиада по теории вероятностей и статистике
год
Дата 2010
задача
Номер 13

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .