Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 13 задач
Версия для печати
Убрать все задачи

Автор: Лифшиц Ю.

В клубе встретились двадцать джентльменов. Некоторые из них были в шляпах, а некоторые – без шляп. Время от времени один из джентльменов снимал с себя шляпу и надевал её на одного из тех, у кого в этот момент шляпы не было. В конце десять джентльменов подсчитали, что каждый из них отдавал шляпу большее количество раз, чем получал. Сколько джентльменов пришли в клуб в шляпах?

Вниз   Решение


На плоскости дано множество из n9 точек. Для любых 9 его точек можно выбрать две окружности так, что все эти точки окажутся на выбранных окружностях. Докажите, что все n точек лежат на двух окружностях.

ВверхВниз   Решение


Докажите, что из любого конечного множества точек на плоскости можно так удалить одну точку, что оставшееся множество можно разбить на две части меньшего диаметра. (Диаметр – это максимальное расстояние между точками множества.)

ВверхВниз   Решение


В треугольнике ABC высота AH равна h, $ \angle$BAC = $ \alpha$, $ \angle$BCA = $ \gamma$. Найдите площадь треугольника ABC.

ВверхВниз   Решение


Если дан ряд из 15 чисел

a1, a2,..., a15, (1)

то можно написать второй ряд

b1, b2,..., b15, (2)

где bi(i = 1, 2, 3,..., 15) равно числу чисел ряда (1), меньших ai. Существует ли ряд чисел ai, если дан ряд чисел bi:

1, 0, 3, 6, 9, 4, 7, 2, 5, 8, 8, 5, 10, 13, 13?

ВверхВниз   Решение


Автор: Шноль Д.Э.

Найдите наименьшее натуральное число n, для которого n2 + 20n + 19 делится на 2019.

ВверхВниз   Решение


Может ли сумма тангенсов углов одного треугольника равняться сумме тангенсов углов другого, если один из этих треугольников остроугольный, а другой тупоугольный?

ВверхВниз   Решение


Докажите тождество:

(1 + x + x2 +...+ x9)(1 + x10 + x20 +...+ x90
×(1 + x100 + x200 +...+ x900)...= $\displaystyle {\dfrac{1}{1-x}}$.


ВверхВниз   Решение


Окружность радиуса R с центром в точке O проходит через вершины A и B треугольника ABC, пересекает отрезок BC в точке M и касается прямой AC в точке A. Найдите CM, зная, что  ∠ACO = α,  ∠MAB = β.

ВверхВниз   Решение


Пусть α , β , γ , τ – такие положительные числа, что при всех x

sinα x+ sinβ x= sinγ x+ sinτ x.

Докажите, что α=γ или α=τ .

ВверхВниз   Решение


Васе на 23 февраля подарили 777 конфет. Вася хочет съесть все конфеты за n дней, причем так, чтобы каждый из этих дней (кроме первого, но включая последний) съедать на одну конфету больше, чем в предыдущий. Для какого наибольшего числа n это возможно?

ВверхВниз   Решение


На столе лежали две колоды, по 36 карт в каждой. Первую колоду перетасовали и положили на вторую. Затем для каждой карты первой колоды подсчитали количество карт между ней и такой же картой второй колоды (то есть сколько карт между семёрками червей, между дамами пик, и т.д.). Чему равна сумма 36 полученных чисел?

ВверхВниз   Решение


Окружность, проходящая через вершины A, B и точку пересечения высот треугольника ABC, пересекает стороны AC и BC во внутренних точках.
Докажите, что  60° < ∠C < 90°.

Вверх   Решение

Задача 65361
Темы:    [ Ортоцентр и ортотреугольник ]
[ Вписанный угол равен половине центрального ]
[ Величина угла между двумя хордами и двумя секущими ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 4-
Классы: 8,9,10,11
Из корзины
Прислать комментарий

Условие

Окружность, проходящая через вершины A, B и точку пересечения высот треугольника ABC, пересекает стороны AC и BC во внутренних точках.
Докажите, что  60° < ∠C < 90°.


Решение 1

  Пусть A' и B' – точки пересечения окружности со сторонами BC и AC соответственно. Тогда угол C равен полуразности дуг AB и A'B'. Поскольку на дугу AB опирается угол между высотами треугольника, равный  180° – ∠C,  то  180° – ∠C > ∠C,  то есть  ∠C < 90°.
  С другой стороны, угол C больше угла между касательными к окружности в точках A и B, который по теореме о вписанном и центральном углах равен
180° – 2∠C.  Следовательно,  ∠C > 60°.


Решение 2

  Пусть угол C не меньше прямого, тогда H лежит вне треугольника или совпадает с C. В обоих случаях точки пересечения не лежат внутри сторон.
  Поскольку  ∠AA'B = ∠BB'A = ∠AHB= 180° – ∠C,  то  ∠AA'C = ∠BB'C = ∠C.  Но эти углы больше углов A и B как внешние углы треугольников AA'B и BB'A. Значит, C – наибольший угол треугольника ABC, то есть он больше 60°.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2015
класс
Класс 8
задача
Номер 8.2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .