Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 12 задач
Версия для печати
Убрать все задачи

Дан многочлен P(x) степени 2003 с действительными коэффициентами, причем старший коэффициент равен 1. Имеется бесконечная последовательность целых чисел  a1, a2, ...,  такая, что  P(a1) = 0,  P(a2) = a1P(a3) = a2  и т. д. Докажите, что не все числа в последовательности  a1, a2, ...  различны.

Вниз   Решение


Составьте из прямоугольников 1х1, 1х2, 1х3,…,1х13 прямоугольник, каждая сторона которого больше 1.

ВверхВниз   Решение


В остроугольном треугольнике ABC  AA1, BB1 и CC1 – высоты. Прямые AA1 и B1C1 пересекаются в точке K. Окружности, описанные вокруг треугольников A1KC1 и A1KB1, вторично пересекают прямые AB и AC в точках N и L соответственно. Докажите, что
  а) сумма диаметров этих окружностей равна стороне BC.

  б)  

ВверхВниз   Решение


Даны квадратные трёхчлены  f и g с одинаковыми старшими коэффициентами. Известно, что сумма четырёх корней этих трёхчленов
равна р. Найдите сумму корней трёхчлена  f + g, если известно, что он имеет два корня.

ВверхВниз   Решение


Три натуральных числа таковы, что произведение каждых двух из них делится на сумму этих двух чисел.
Докажите, что эти три числа имеют общий делитель, больший единицы.

ВверхВниз   Решение


Автор: Храмцов Д.

Набор чисел a0, a1, ..., an удовлетворяет условиям:  a0 = 0,  ak+1ak + 1  при  k = 0, 1, ..., n – 1.  Докажите неравенство  

ВверхВниз   Решение


Каждая клетка клетчатой плоскости раскрашена в один из n² цветов так, что в каждом квадрате из клеток встречаются все цвета. Известно, что в какой-то строке встречаются все цвета. Докажите, что существует столбец, раскрашенный ровно в n цветов.

ВверхВниз   Решение


На доске написаны  n > 3  различных натуральных чисел, меньших чем  (n – 1)!.  Для каждой пары этих чисел Серёжа поделил большее на меньшее с остатком и записал в тетрадку полученное неполное частное (так, если бы он делил 100 на 7, то он бы получил  100 = 14·7 + 2  и записал бы в тетрадку число 14). Докажите, что среди чисел в тетрадке найдутся два равных.

ВверхВниз   Решение


ABCDE — правильный пятиугольник. Tочка B' симметрична точке B относительно прямой AC (см. рисунок). Mожно ли пятиугольниками, равными AB'CDE, замостить плоскость?

ВверхВниз   Решение


Bнутри треугольника ABC выбрана произвольная точка M. Докажите, что  MA + MB + MC ≤ max {AB + BC, BC + AC, AC + AB}.

ВверхВниз   Решение


На берегу круглого острова Гдетотам расположено 20 деревень, в каждой живёт по 20 борцов. Был проведён турнир, в котором каждый борец встретился со всеми борцами из всех других деревень. Деревня А считается сильнее деревни Б, если хотя бы k поединков между борцами из этих деревень заканчивается победой борца из деревни А. Выяснилось, что каждая деревня сильнее следующей за ней по часовой стрелке. Какое наибольшее значение может иметь k? (У всех борцов разная сила, и в поединке всегда побеждает сильнейший.)

ВверхВниз   Решение


Автор: Мухин Д.Г.

В выпуклой n-угольной призме равны все боковые грани. При каких n эта призма обязательно прямая?

Вверх   Решение

Задача 65650
Темы:    [ Выпуклые тела ]
[ Призма (прочее) ]
[ Проектирование помогает решить задачу ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 9,10,11
Из корзины
Прислать комментарий

Условие

Автор: Мухин Д.Г.

В выпуклой n-угольной призме равны все боковые грани. При каких n эта призма обязательно прямая?


Решение

  При  n = 4  призма может быть и наклонной. Достаточно рассмотреть, например, четырёхугольную призму, у которой все грани – равные ромбы (такая фигура называется ромбоидом, рис. слева).

             
  Теперь докажем, что в остальных случаях  (n = 3  и  n > 4)  призма обязательно будет прямой.
  Пусть это не так, то есть боковые грани призмы – равные параллелограммы, не являющиеся прямоугольниками. Тогда вершины основания являются вершинами трёхгранных углов двух типов:
  1) с двумя равными плоскими углами;
  2) с двумя плоскими углами, в сумме дающими 180°.
  В первом случае проекция общего ребра для этих углов принадлежит прямой, содержащей биссектрису внутреннего угла многоугольника в основании, а во втором – внешнего.

  Заметим, что соседние вершины основания – разных типов. Действительно, поскольку проекции параллельных прямых параллельны, то, в противном случае, мы получим параллельность биссектрис двух соседних внутренних или внешних углов выпуклого многоугольника, что невозможно.

  Рассмотрим любые три последовательные грани: AA1D1D, AA1B1B и BB1C1C. Пусть A' и B' – проекции A1 и B1 соответственно на плоскость основания призмы, причём A' принадлежит прямой, содержащей биссектрису внутреннего угла DAB многоугольника в основании, а B' – внешнего угла CBK (рис. справа). Тогда прямые AA' и BB' параллельны, то есть  ∠A'AK = ∠B'BK,  откуда  ∠DAB = ∠CBK,  следовательно, прямые AD и BC параллельны.
  Итак, мы доказали, что у многоугольника в основании призмы стороны через одну параллельны. Учитывая его выпуклость, получим, что он является параллелограммом. Противоречие.


Ответ

При всех  n ≠ 4.

Замечания

Условие выпуклости призмы является существенным: при  n > 4  существуют невыпуклые (но не прямые) призмы, удовлетворяющие условию.

Источники и прецеденты использования

олимпиада
Название Московская устная олимпиада по геометрии
год/номер
Дата 2016-04-17
класс
Класс 10-11
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .