Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

Автор: Ионин Ю.И.

Квадратный трёхчлен  f(x) = ax² + bx + c  таков, что уравнение  f(x) = x  не имеет вещественных корней.
Докажите, что уравнение  f(f(x)) = x  также не имеет вещественных корней.

Вниз   Решение


Подряд выписаны n чисел, среди которых есть положительные и отрицательные. Подчеркивается каждое положительное число, а также каждое число, сумма которого с несколькими непосредственно следующими за ним числами положительна. Докажите, что сумма всех подчеркнутых чисел положительна.

ВверхВниз   Решение


Докажите, что если в треугольной пирамиде любые два трехгранных угла равны или симметричны, то все грани этой пирамиды равны.

ВверхВниз   Решение


Окружность ω описана около остроугольного треугольника ABC. На стороне AB выбрана точка D, а на стороне BC – точка E так, что  DE || AC.  Точки P и Q на меньшей дуге AC окружности ω таковы, что  DP || EQ.  Лучи QA и PC пересекают прямую DE в точках X и Y соответственно. Докажите, что  ∠XBY + ∠PBQ = 180°.

ВверхВниз   Решение


В остроугольном неравнобедренном треугольнике ABC проведены высоты AA1, BB1 и CC1. Пусть ω – его описанная окружность, точка M – середина стороны BC, P – вторая точка пересечения описанной окружности треугольника AB1C1 и ω, T – точка пересечения касательных к ω, проведённых в точках B и C, S – точка пересечения AT и ω. Докажите, что P, A1, S и середина отрезка MT лежат на одной прямой.

ВверхВниз   Решение


Пусть A1, B1,..., F1 — середины сторон AB, BC,..., FA произвольного шестиугольника. Докажите, что точки пересечения медиан треугольников A1C1E1 и B1D1F1 совпадают.

ВверхВниз   Решение


Дана равнобокая трапеция ABCD (AB=CD). На описанной около неё окружности выбирается точка P так, что отрезок CP пересекает основание AD в точке Q. Пусть L – середина QD. Докажите, что длина диагонали трапеции не превосходит суммы расстояний от середин её боковых сторон до любой точки прямой PL.

ВверхВниз   Решение


На сферической планете с длиной экватора 1 планируют проложить N кольцевых дорог, каждая из которых будет идти по окружности длины 1. Затем по каждой дороге запустят несколько поездов. Все поезда будут ездить по дорогам с одной и той же положительной постоянной скоростью, никогда не останавливаясь и не сталкиваясь. Какова в таких условиях максимально возможная суммарная длина всех поездов? Поезда считайте дугами нулевой толщины, из которых выброшены концевые точки. Решите задачу в случаях:  а)  N = 3;  б)  N = 4.

ВверхВниз   Решение


Автор: Ивлев Ф.

Стороны AB, BC, CD и DA четырехугольника ABCD касаются окружности с центром I в точках K, L, M и N соответственно. На прямой AI выбрана произвольная точка P. Прямая PK пересекает прямую BI в точке Q. Прямая QL пересекает прямую CI в точке R. Прямая RM пересекает прямую DI в точке S. Докажите, что точки P, N и S лежат на одной прямой.

Вверх   Решение

Задача 67094
Темы:    [ Теоремы Чевы и Менелая ]
[ Три точки, лежащие на одной прямой ]
Сложность: 3+
Классы: 8,9,10,11
Из корзины
Прислать комментарий

Условие

Автор: Ивлев Ф.

Стороны AB, BC, CD и DA четырехугольника ABCD касаются окружности с центром I в точках K, L, M и N соответственно. На прямой AI выбрана произвольная точка P. Прямая PK пересекает прямую BI в точке Q. Прямая QL пересекает прямую CI в точке R. Прямая RM пересекает прямую DI в точке S. Докажите, что точки P, N и S лежат на одной прямой.

Решение

По теореме Менелая BQQIIPPAAKKB=1. Аналогично CRRIIQQBBLLC=1 и DSSIIRRCCMMD=1. Перемножая эти равенства с учетом равенств AK=AN, BK=BL, CL=CM, DM=DN, получаем ISSDDNNAAPPI=1, что равносильно утверждению задачи.

Замечания

Утверждение останется верным при замене точки I произвольной точкой плоскости.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2022
Заочный тур
задача
Номер 9 [8-9 кл]

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .