ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Внутри квадрата расположены три окружности, каждая из которых касается внешним образом двух других, а также касается двух сторон квадрата. Докажите, что радиусы двух из данных окружностей одинаковы. Во время бала каждый юноша танцевал вальс с девушкой либо более красивой, чем на предыдущем танце, либо более умной, а один – с девушкой одновременно более красивой и более умной. Могло ли такое быть? (Юношей и девушек на балу было поровну.) Незнайка утверждает, что он может провести на плоскости 4 прямые так, чтобы их суммарное количество точек пересечения равнялось пяти и 5 прямых так, чтобы их суммарное количество точек пересечения равнялось четырем. Прав ли он?
Четырёхугольник ABCD вписан в окружность. Продолжение стороны
AB за точку B пересекается с продолжением стороны DC за точку
C в точке E. Найдите угол BAD, если AB = 2,
BD = 2
Действительные числа $a$, $b$, $c$, $d$ таковы, что $$\frac{a}{b} + \frac{b}{a} = \frac{c}{d} + \frac{d}{c}.$$ Докажите, что произведение каких-то двух чисел из $a$, $b$, $c$, $d$ равно произведению двух других.
Из произвольной точки M окружности, описанной около прямоугольника, опустили перпендикуляры MP и MQ на две его противоположные стороны, и перпендикуляры MR и MT — на продолжения двух других сторон. Докажите, что прямые PR и QT перпендикулярны друг другу, а их точка пересечения принадлежит диагонали прямоугольника.
На лицевой стороне каждой из $6$ карточек Аня написала черным или красным фломастером по натуральному числу. При этом каждым цветом Аня написала хотя бы два числа. Затем Боря взял каждую карточку, посмотрел, каким цветом на ней написано число, перемножил все Анины числа того же цвета на других карточках и записал результат на обороте карточки (если другая карточка того же цвета всего одна, то Боря пишет число с этой одной карточки). Мы видим обороты, на которых написаны числа $18$, $23$, $42$, $42$, $47$, $63$. А что написано на лицевых сторонах этих карточек? В параллели 7-х классов 100 учеников, некоторые из которых дружат друг с другом. 1 сентября они организовали несколько клубов, каждый из которых основали три ученика (у каждого клуба свои). Дальше каждый день в каждый клуб вступали те ученики, кто дружил хотя бы с тремя членами клуба. К 19 февраля в клубе «Гепарды» состояли все ученики параллели. Могло ли получиться так, что в клубе «Черепахи» в этот же день состояло ровно 50 учеников? Известно, что разность между наибольшим и наименьшим из чисел x1, x2, x3, ..., x9, x10 равна 1. Какой а) наибольшей; б) наименьшей может быть разность между наибольшим и наименьшим из 10 чисел x1, ½ (x1 + x2), ⅓ (x1 + x2 + x3), ..., 1/10 (x1 + x2 + ... + x10)? Пусть $(P,P')$ и $(Q,Q')$ – две пары точек, изогонально сопряженных относительно треугольника $ABC$, $R$ – точка пересечения прямых $PQ$ и $P'Q'$. Докажите, что педальные окружности точек $P$, $Q$ и $R$ соосны. |
Задача 67368
УсловиеПусть $(P,P')$ и $(Q,Q')$ – две пары точек, изогонально сопряженных относительно треугольника $ABC$, $R$ – точка пересечения прямых $PQ$ и $P'Q'$. Докажите, что педальные окружности точек $P$, $Q$ и $R$ соосны.
РешениеБудем обозначать через $X_a$, $X_b$, $X_c$ проекции произвольной точки $X$ на $BC$, $CA$, $AB$ соответственно. Пусть $p$, $q$, $r$ – педальные окружности точек $P$, $Q$, $R$, а $M$, $N$, $K$ соответственно – их центры. Тогда $M$, $N$, $K$ лежат на прямой Гаусса четырехсторонника $PQP'Q'$. По теореме Менелая для треугольников $PQR'$ и $P'Q'R'$ ($R'$ изогонально сопряжена $R$). $$ \frac{P'Q}{P'R'}\frac{Q'R'}{Q'P}\frac{PR}{RQ}=\frac{P'Q}{QR'}\frac{R'P}{PQ'}\frac{Q'R}{RP'}=1. $$ Следовательно, $$ \frac{RP\cdot RP'}{RQ\cdot RQ'}=\frac{R'P\cdot R'P'}{R'Q\cdot R'Q'}. $$ По теореме Фалеса $$ \frac{R_aP_a\cdot R_aP'_a}{R_aQ_a\cdot R_aQ'_a}=\frac{R'_aP_a\cdot R'_aP'_a}{R'_aQ_a\cdot R'_aQ'_a}, $$ т.е. отношения степеней точек $R_a$, $R'_a$ относительно окружностей $p$ и $q$ равны. Следовательно, эти точки лежат на какой-то окружности, соосной с $p$ и $q$. Поскольку центр этой окружности лежит на прямой $MN$, она совпадает с $r$. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке