Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

Автор: Шень А.Х.

Кресла для зрителей вдоль лыжной трассы занумерованы по порядку: 1, 2, 3, ..., 1000. Кассирша продала n билетов на все первые 100 мест, но n больше 100, так как на некоторые места она продала больше одного билета (при этом  n < 1000).  Зрители входят на трассу по одному.Каждый, подойдя к своему месту, занимает его, если оно свободно, если же занято, говорит "Ох!", идёт в сторону роста номеров до первого свободного места и занимает его. Каждый раз, обнаружив очередное место занятым, он говорит "Ох!". Докажите, что число "охов" не зависит от того, в каком порядке зрители выходят на трассу.

Вниз   Решение


а) В треугольник ABC вписаны треугольники A1B1C1 и A2B2C2 так, что  C1A1BCA1B1CAB1C1ABB2A2BCC2B2CA,
A2C2AB.  Докажите, что эти треугольники равны.

б) Внутри треугольника ABC взяли точки A1, B1, C1, A2, B2, C2 так, что A1 - на отрезке AB1, B1 - на отрезке BC1, C1 – на отрезке CA1, A2 – на отрезке AC2, B2 – на отрезке BA2, C2 – на отрезке CB2 и углы BAA1, CBB1, ACC1, CAA2, ABB2, BCC2 равны. Докажите, что треугольники A1B1C1 и A2B2C2 равны.

ВверхВниз   Решение


Последовательность (an) задана условиями a1= 1000000 , an+1=n[]+n . Докажите, что в ней можно выделить бесконечную подпоследовательность, являющуюся арифметической прогрессией.

ВверхВниз   Решение


a, b, c – целые числа, причём  a + b + c  делится на 6. Докажите, что  a³ + b³ + c³  тоже делится на 6.

ВверхВниз   Решение


Целые неотрицательные числа x и y удовлетворяют равенству   x² – mxy + y² = 1   (1)   тогда и только тогда, когда x и y – соседние члены последовательности  (2):  a0 = 0,  a1 = 1,  a2 = ma3 = m² – 1,  a4 = m³ – 2ma5 = m4 – 3m² + 1,  ...,  в которой  ak+1 = mak – ak–1  для любого  k 0.  Докажите это.

ВверхВниз   Решение


К плоскости приклеены два непересекающихся не обязательно одинаковых деревянных круга – серый и чёрный. Дан бесконечный деревянный угол, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи угла, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершине). Докажите, что внутри угла можно нарисовать луч, выходящий из вершины, так, чтобы при всевозможных положениях угла этот луч проходил через одну и ту же точку плоскости.

ВверхВниз   Решение


Найдите суммы
  а)   1·n + 2(n – 1) + 3(n – 2) + ... + n·1.
  б)   Sn,k = (1·2·...·k)·(n(n – 1)...(nk + 1)) + (2·3·...·(k + 1))·((n – 1)(n – 2)...(nk)) + ... + ((nk + 1)(nk + 2)...·n)·(k(k – 1)·...·1).

Вверх   Решение

Задача 73575
Темы:    [ Суммы числовых последовательностей и ряды разностей ]
[ Подсчет двумя способами ]
[ Сочетания и размещения ]
[ Рекуррентные соотношения (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

Найдите суммы
  а)   1·n + 2(n – 1) + 3(n – 2) + ... + n·1.
  б)   Sn,k = (1·2·...·k)·(n(n – 1)...(nk + 1)) + (2·3·...·(k + 1))·((n – 1)(n – 2)...(nk)) + ... + ((nk + 1)(nk + 2)...·n)·(k(k – 1)·...·1).


Решение

  а) Найдём сначала сумму вида   1·2 + 2·3 + 3·4 + ... + (n – 1)n.
  Заметим, что   3k(k + 1) = k(k + 1)(k + 2) – (k – 1)k(k + 1).   Сложив эти равенства по k от 1 до  n – 1,  получим, что
     3(1·2 + 2·3 + 3·4 + ... + (n – 1)n = (n – 1)n(n + 1).
  Вернёмся к решению задачи.
     1·n + 2(n – 1) + 3(n – 2) + ... + n·1 = (n·n – (n – 1)n) + (n(n – 1) – (n – 2)(n – 1)) + (n(n – 2) – (n – 3)(n – 2)) + ... + n·1 =

     

  б) Заметим, что  
  Расположим в ряд  n + k  шаров. Каждое слагаемое вида     представляет собой число выборок по 2k шаров из этого ряда, но не всех возможных, а таких, когда сперва выбирают k из первых  k + m  шаров, а затем ещё k шаров из оставшихся  n – m.
  Суммирование таких слагаемых по m от 0 до  n – k  можно интерпретировать так: сначала вставим в ряд шаров перегородку, слева и справа от которой находится не менее, чем по k шаров, а потом выберем k шаров слева и k шаров справа от нее.
  Вместо этого можно поступить по-другому: возьмём ряд из  n + k + 1  шара и выберем  2k + 1  из них; затем средний из выбранных шаров заменим перегородкой.
  Отсюда ясно, что     и, следовательно,  


Ответ

а)     б)  

Источники и прецеденты использования

журнал
Название "Квант"
год
Год 1970
выпуск
Номер 8
Задача
Номер М40

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .