ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 73571  (#М36)

Темы:   [ Системы точек и отрезков (прочее) ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 5
Классы: 8,9,10,11

На плоскости нельзя расположить семь прямых и семь точек так, чтобы через каждую из точек проходили три прямые и на каждой прямой лежали три точки. Докажите это.
Прислать комментарий     Решение


Задача 73572  (#М37)

Темы:   [ Числовые таблицы и их свойства ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Примеры и контрпримеры. Конструкции ]
[ Метод спуска ]
Сложность: 5+
Классы: 9,10,11

Автор: Ионин Ю.И.

В каждую клетку бесконечного листа клетчатой бумаги вписано некоторое число так, что сумма чисел в любом квадрате, стороны которого идут по линиям сетки, по модулю не превосходит единицы.
  а) Докажите существование такого числа c, что сумма чисел в любом прямоугольнике, стороны которого идут по линиям сетки, не больше c; другими словами, докажите, что суммы чисел в прямоугольниках ограничены.
  б) Докажите, что можно взять  c = 4.
  в) Улучшите эту оценку – докажите, что утверждение верно для  c = 3.
  г) Постройте пример, показывающий, что при  c > 3  утверждение неверно.

Прислать комментарий     Решение

Задача 55522  (#М38)

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Прямоугольный треугольник с углом в 30╟ ]
Сложность: 4+
Классы: 8,9

Окружность, построенная на высоте AD прямоугольного треугольника ABC как на диаметре, пересекает катет AB в точке K, а катет AC — в точке M. Отрезок KM пересекает высоту AD в точке L. Известно, что отрезки AK, AL и AM составляют геометрическую прогрессию (т.е. $ {\frac{AK}{AL}}$ = $ {\frac{AL}{AM}}$). Найдите острые углы треугольника ABC.

Прислать комментарий     Решение


Задача 73574  (#М39)

Темы:   [ Линейные рекуррентные соотношения ]
[ Уравнения в целых числах ]
[ Метод спуска ]
[ Итерации ]
[ Геометрические интерпретации в алгебре ]
Сложность: 5-
Классы: 9,10,11

Целые неотрицательные числа x и y удовлетворяют равенству   x² – mxy + y² = 1   (1)   тогда и только тогда, когда x и y – соседние члены последовательности  (2):  a0 = 0,  a1 = 1,  a2 = ma3 = m² – 1,  a4 = m³ – 2ma5 = m4 – 3m² + 1,  ...,  в которой  ak+1 = mak – ak–1  для любого  k 0.  Докажите это.

Прислать комментарий     Решение

Задача 73575  (#М40)

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Подсчет двумя способами ]
[ Сочетания и размещения ]
[ Рекуррентные соотношения (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5
Классы: 8,9,10

Найдите суммы
  а)   1·n + 2(n – 1) + 3(n – 2) + ... + n·1.
  б)   Sn,k = (1·2·...·k)·(n(n – 1)...(nk + 1)) + (2·3·...·(k + 1))·((n – 1)(n – 2)...(nk)) + ... + ((nk + 1)(nk + 2)...·n)·(k(k – 1)·...·1).

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .