Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 11 задач
Версия для печати
Убрать все задачи

Автор: Ионин Ю.И.

Квадратный трёхчлен  f(x) = ax² + bx + c  таков, что уравнение  f(x) = x  не имеет вещественных корней.
Докажите, что уравнение  f(f(x)) = x  также не имеет вещественных корней.

Вниз   Решение


Подряд выписаны n чисел, среди которых есть положительные и отрицательные. Подчеркивается каждое положительное число, а также каждое число, сумма которого с несколькими непосредственно следующими за ним числами положительна. Докажите, что сумма всех подчеркнутых чисел положительна.

ВверхВниз   Решение


Докажите, что если в треугольной пирамиде любые два трехгранных угла равны или симметричны, то все грани этой пирамиды равны.

ВверхВниз   Решение


Окружность ω описана около остроугольного треугольника ABC. На стороне AB выбрана точка D, а на стороне BC – точка E так, что  DE || AC.  Точки P и Q на меньшей дуге AC окружности ω таковы, что  DP || EQ.  Лучи QA и PC пересекают прямую DE в точках X и Y соответственно. Докажите, что  ∠XBY + ∠PBQ = 180°.

ВверхВниз   Решение


В остроугольном неравнобедренном треугольнике ABC проведены высоты AA1, BB1 и CC1. Пусть ω – его описанная окружность, точка M – середина стороны BC, P – вторая точка пересечения описанной окружности треугольника AB1C1 и ω, T – точка пересечения касательных к ω, проведённых в точках B и C, S – точка пересечения AT и ω. Докажите, что P, A1, S и середина отрезка MT лежат на одной прямой.

ВверхВниз   Решение


Пусть A1, B1,..., F1 — середины сторон AB, BC,..., FA произвольного шестиугольника. Докажите, что точки пересечения медиан треугольников A1C1E1 и B1D1F1 совпадают.

ВверхВниз   Решение


Дана равнобокая трапеция $ABCD$ ($AB=CD$). На описанной около неё окружности выбирается точка $P$ так, что отрезок $CP$ пересекает основание $AD$ в точке $Q$. Пусть $L$ – середина $QD$. Докажите, что длина диагонали трапеции не превосходит суммы расстояний от середин её боковых сторон до любой точки прямой $PL$.

ВверхВниз   Решение


На сферической планете с длиной экватора 1 планируют проложить N кольцевых дорог, каждая из которых будет идти по окружности длины 1. Затем по каждой дороге запустят несколько поездов. Все поезда будут ездить по дорогам с одной и той же положительной постоянной скоростью, никогда не останавливаясь и не сталкиваясь. Какова в таких условиях максимально возможная суммарная длина всех поездов? Поезда считайте дугами нулевой толщины, из которых выброшены концевые точки. Решите задачу в случаях:  а)  N = 3;  б)  N = 4.

ВверхВниз   Решение


Автор: Ивлев Ф.

Стороны $AB$, $BC$, $CD$ и $DA$ четырехугольника $ABCD$ касаются окружности с центром $I$ в точках $K$, $L$, $M$ и $N$ соответственно. На прямой $AI$ выбрана произвольная точка $P$. Прямая $PK$ пересекает прямую $BI$ в точке $Q$. Прямая $QL$ пересекает прямую $CI$ в точке $R$. Прямая $RM$ пересекает прямую $DI$ в точке $S$. Докажите, что точки $P$, $N$ и $S$ лежат на одной прямой.

ВверхВниз   Решение


Автор: Ионин Ю.И.

а) Докажите, что любая прямая, делящая пополам площадь и периметр треугольника, проходит через центр вписанной окружности.
б) Докажите аналогичное утверждение для любого описанного многоугольника.

ВверхВниз   Решение


Дан остроугольный треугольник A0B0C0. Пусть точки A1, B1, C1 — центры квадратов, построенных на сторонах B0C0, C0A0, A0B0. С треугольником A1B1C1 делаем то же самое. Получаем треугольник A2B2C2 и т.д. Доказать, что $ \Delta$An + 1Bn + 1Cn + 1 пересекает $ \Delta$AnBnCn ровно в 6 точках.

Вверх   Решение

Задача 78240
Темы:    [ Индукция в геометрии ]
[ Выпуклые многоугольники ]
Сложность: 4-
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

Дан остроугольный треугольник A0B0C0. Пусть точки A1, B1, C1 — центры квадратов, построенных на сторонах B0C0, C0A0, A0B0. С треугольником A1B1C1 делаем то же самое. Получаем треугольник A2B2C2 и т.д. Доказать, что $ \Delta$An + 1Bn + 1Cn + 1 пересекает $ \Delta$AnBnCn ровно в 6 точках.

Решение

Заметим, что если $ \triangle$AnBnCn остроугольный, то треугольник $ \triangle$An + 1Bn + 1Cn + 1 пересекает его в шести точках. Поскольку $ \angle$Bn + 1AnCn = 45o = $ \angle$Cn + 1AnBn, а $ \angle$BnAnCn острый, получаем, что лучи AnBn и AnCn лежат внутри угла Bn + 1AnCn + 1. Аналогично и для вершин Bn и Cn, а значит, шестиугольник AnCn + 1BnAn + 1CnBn + 1 выпуклый и треугольник $ \triangle$An + 1Bn + 1Cn + 1 пересекает треугольник $ \triangle$AnBnCn в шести точках. Теперь докажем индукцией по n, что треугольник $ \triangle$AnBnCn остроугольный. Предположим, что при n = k треугольник остроугольный, тогда докажем, что при n = k + 1 треугольник также будет остроугольный. Уже доказано, что шестиугольник AkCk + 1BkAk + 1CkBk + 1 выпуклый, а значит, угол $ \angle$Cn + 1An + 1Bn + 1 меньше угла $ \angle$BnAn + 1Cn, но $ \angle$BnAn + 1Cn = 90o, а значит, угол $ \angle$Cn + 1An + 1Bn + 1 — острый. Аналогично докажем, что и другие углы треугольника $ \triangle$Cn + 1An + 1Bn + 1 острые, а значит, и сам треугольник остроугольный, что и требовалось доказать.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 24
Год 1961
вариант
1
Класс 7
Тур 1
задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .