Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 17 задач
Версия для печати
Убрать все задачи

Докажите, что любой остроугольный треугольник площади 1 можно поместить в прямоугольный треугольник площади $ \sqrt{3}$.

Вниз   Решение


Доказать, что существует бесконечно много чисел, не представимых в виде суммы трёх кубов.

ВверхВниз   Решение


Докажите справедливость формулы  

ВверхВниз   Решение


На сторонах правильного треугольника ABC как на основаниях внутренним образом построены равнобедренные треугольники  A1BC, AB1C и ABC1 с углами α, β и γ при основаниях, причём  α + β + γ = 60°.  Прямые BC1 и B1C пересекаются в точке A2, AC1 и A1C – в точке B2, AB1 и A1B – в точке C2. Докажите, что углы треугольника A2B2C2 равны 3α, 3β и 3γ.

ВверхВниз   Решение


Окружность радиуса ua вписана в угол A треугольника ABC, окружность радиуса ub вписана в угол B; эти окружности касаются друг друга внешним образом. Докажите, что радиус описанной окружности треугольника со сторонами     равен    где p – полупериметр треугольника ABC.

ВверхВниз   Решение


Напечатать в порядке возрастания все простые несократимые дроби, заключенные между 0 и 1, знаменатели которых не превышают 7.

ВверхВниз   Решение


В каждый из углов треугольника ABC вписано по окружности. Из одной вершины окружности, вписанные в два других угла, видны под равными углами. Из другой – тоже. Докажите, что тогда и из третьей вершины две окружности видны под равными углами.

ВверхВниз   Решение


Докажите, что для любого натурального a найдётся такое натуральное n, что все числа  n + 1,  nn + 1,  nnn + 1,  ...  делятся на a.

ВверхВниз   Решение


Докажите, что среди 51 целого числа найдутся два, квадраты которых дают одинаковые остатки при делении на 100.

ВверхВниз   Решение


Докажите, что в любой выпуклый многоугольник площади 1 можно поместить треугольник, площадь которого не меньше: а) 1/4; б) 3/8.

ВверхВниз   Решение


В вершинах куба расставлены цифры 1, 2, ..., 8. Докажите, что есть ребро, цифры на концах которого отличаются не менее чем на 3.

ВверхВниз   Решение


На квадратном клетчатом листе бумаги размером 100 * 100 клеток нарисовано несколько прямоугольников. Каждый прямоугольник состоит из целых клеток, различные прямоугольники не накладываются друг на друга и не соприкасаются (см. пример на рис.). Задан массив размером 100 * 100, в котором элемент А [i, j] = 1, если клетка [i, j] принадлежит какому - либо прямоугольнику, и А [i, j] = 0 в противном случае. Написать программу, которая сосчитает и напечатает число прямоугольников.

ВверхВниз   Решение


а) Может ли квадрат натурального числа оканчиваться на 2?

б) Можно ли, используя только цифры 2, 3, 7, 8 (возможно, по несколько раз), составить квадрат натурального числа?

ВверхВниз   Решение


Карлсон написал дробь 10/97. Малыш может:
  1) прибавлять любое натуральное число к числителю и знаменателю одновременно,
  2) умножать числитель и знаменатель на одно и то же натуральное число. Сможет ли Малыш с помощью этих действий получить дробь,
  а) равную ½?  б) равную 1?

ВверхВниз   Решение


Можно ли разбить какой-нибудь треугольник на 5 одинаковых треугольников?

ВверхВниз   Решение


На доске 8×8 стоят 8 не бьющих друг друга ладей. Все клетки доски распределяются во владения этих ладей по следующему правилу. Клетка, на которой стоит ладья, отдаётся этой ладье. Клетку, которую бьют две ладьи, получает та из ладей, которая ближе к этой клетке; если же эти две ладьи равноудалены от клетки, то каждая из них получает по полклетки. Докажите, что площади владений всех ладей одинаковы.

ВверхВниз   Решение


Даны два пересекающихся луча и BD. На этих лучах выбираются точки M и N (соответственно) так, что AM = BN. Найти положение точек M и N, при котором длина отрезка MN минимальна.

Вверх   Решение

Задача 78284
Темы:    [ Наибольшая или наименьшая длина ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

Даны два пересекающихся луча и BD. На этих лучах выбираются точки M и N (соответственно) так, что AM = BN. Найти положение точек M и N, при котором длина отрезка MN минимальна.

Решение

Проведём через точку M прямую, параллельную BN, и возьмём на ней такую точку Р, что BP || MN. Так как BPMN — параллелограмм, и MA, по условию, равно BN, то мы получаем: AM = MP, т. е. треугольник AMP — равнобедренный. Обозначим через $ \alpha$ угол между данными лучами (и, значит, между прямыми AM и MP). В таком случае

$\displaystyle \angle$MAP = $\displaystyle {\frac{180^{\circ}-\alpha}{2}}$.

Мы видим, что $ \angle$MAP не зависит от положения точки M на луче AO. Это значит, что точка P всегда лежит на некоторой вполне определённой прямой (составляющей угол $\displaystyle \beta$ = $\displaystyle {\frac{180^{\circ}-\alpha}{2}}$ с данным лучом AO). Заметим теперь, что PB = MN, а мы ищем такое положение точки M, что отрезок MN минимален. Это, очевидно, произойдёт в том случае, когда PB $ \perp$ AP, что и определяет выбор точки Р, а следовательно, и точки M.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 25
Год 1962
вариант
1
Класс 10
Тур 1
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .