Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

Найдите какие-нибудь семь последовательных натуральных чисел, каждое из которых можно изменить (увеличить или уменьшить) на 1 таким образом, чтобы произведение семи полученных в результате чисел равнялось произведению семи исходных чисел.

Вниз   Решение


Высота параллелограмма, проведённая из вершины тупого угла, равна 2 и делит сторону параллелограмма пополам. Острый угол параллелограмма равен 30°. Найдите диагональ, проведённую из вершины тупого угла, и углы, которые она образует со сторонами.

ВверхВниз   Решение


На стороне AD параллелограмма ABCD взята точка P так, что  AP : AD = 1 : n,  Q – точка пересечения прямых AC и BP.
Докажите, что  AQ : AC = 1 : (n + 1).

ВверхВниз   Решение


На сторонах произвольного треугольника ABC вне его построены равнобедренные треугольники A'BC, AB'C и ABC' с вершинами A', B' и C' и углами $ \alpha$, $ \beta$ и $ \gamma$ при этих вершинах, причем $ \alpha$ + $ \beta$ + $ \gamma$ = 2$ \pi$. Докажите, что углы треугольника A'B'C' равны $ \alpha$/2, $ \beta$/2, $ \gamma$/2.

ВверхВниз   Решение


В равнобедренном прямоугольном треугольнике радиус вписанной окружности равен 2.
Найдите расстояние от вершины острого угла до точки, в которой вписанная окружность касается противолежащего этому углу катета.

ВверхВниз   Решение


Докажите, что     при  x ≥ 0.

ВверхВниз   Решение


Радиусы двух окружностей равны 27 и 13, а расстояние между центрами равно 50. Найдите длины их общих касательных.

ВверхВниз   Решение


Про последовательность x1, x2, ..., xn, ... известно, что для любого n > 1 выполнено равенство 3xn - xn - 1 = n. Кроме того, известно, что | x1| < 1971. Вычислить x1971 с точностью до 0, 000001.

ВверхВниз   Решение


Найти на плоскости точку, сумма расстояний от которой до четырёх заданных точек минимальна.

Вверх   Решение

Задача 79416
Тема:    [ Четырехугольники (экстремальные свойства) ]
Сложность: 3+
Классы: 9,10
Из корзины
Прислать комментарий

Условие

Найти на плоскости точку, сумма расстояний от которой до четырёх заданных точек минимальна.

Решение

См. решение задачи 78221.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 45
Год 1982
вариант
Класс 9
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .