ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Рассматривается последовательность 1, ½, ⅓, ¼, ⅕, ⅙, 1/7, ... Существует ли арифметическая прогрессия
Каждая из двух равных окружностей ω1 и ω2 проходит через центр другой. Треугольник ABC вписан в ω1, а прямые AC, BC касаются ω2. Найдите все простые числа, которые отличаются на 17.
Даны две концентрические окружности S1 и S2. С помощью циркуля и линейки проведите прямую, на которой эти окружности высекают три равных отрезка.
Центр круга – точка с декартовыми координатами (a, b). Известно, что начало координат лежит внутри круга. Обозначим через S+ общую площадь частей круга, состоящих из точек, обе координаты которых имеют одинаковый знак; а через S– – площадь частей, состоящих из точек с координатами разных знаков. Найдите величину S+ – S–. Пять отрезков провели (не отрывая карандаша от бумаги) так, что получилась пятиугольная звезда, разделённая проведёнными отрезками на пять треугольников и пятиугольник. Оказалось, что все пять треугольников равны. Обязательно ли пятиугольник правильный? Турнир Городов проводится раз в год. Сейчас год проведения осеннего тура делится на номер турнира: 2021:43 = 47. Сколько ещё раз человечество сможет наблюдать это удивительное явление? Найдите какой-нибудь многочлен с целыми коэффициентами, корнем которого
является число Докажите, что в правильном двенадцатиугольнике A1A2...A12 диагонали A1A5, A2A6, A3A8 и A4A11 пересекаются в одной точке. Доказать, что можно так расположить числа от 1 до n² в таблицу n×n, чтобы суммы чисел каждого столбца были равны. Кузнечик прыгает по прямой. В первый раз он прыгнул на 1 см в какую-то сторону, во второй раз – на 2 см и так далее. Даны 103 монеты одинакового внешнего вида. Известно, что две из них – фальшивые, что все настоящие одинакового веса, что фальшивые – тоже одинакового веса, отличающегося от веса настоящих монет. Но неизвестно, в какую сторону отличаются веса фальшивых монет от настоящих. Как можно это узнать с помощью трёх взвешиваний на двухчашечных весах без гирь? (Отделить фальшивые монеты не требуется.) Какое максимальное число ладей можно расставить в кубе 8×8×8, чтобы они не били друг друга? Каждые две из 13 ЭВМ соединены своим проводом. |
Задача 79456
УсловиеКаждые две из 13 ЭВМ соединены своим проводом. РешениеСм. задачу 65000 б). ОтветНельзя. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке