Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

Рассматривается последовательность  1, ½, ⅓, ¼, ⅕, ⅙, 1/7, ...  Существует ли арифметическая прогрессия
  а) длины 5;
  б) сколь угодно большой длины,
составленная из членов этой последовательности?

Вниз   Решение


Каждая из двух равных окружностей ω1 и ω2 проходит через центр другой. Треугольник ABC вписан в ω1, а прямые AC, BC касаются ω2.
Докажите, что  cos∠A + cos∠B = 1.

ВверхВниз   Решение


Найдите все простые числа, которые отличаются на 17.

ВверхВниз   Решение


Даны две концентрические окружности S1 и S2. С помощью циркуля и линейки проведите прямую, на которой эти окружности высекают три равных отрезка.

ВверхВниз   Решение


Центр круга – точка с декартовыми координатами  (a, b).  Известно, что начало координат лежит внутри круга. Обозначим через S+ общую площадь частей круга, состоящих из точек, обе координаты которых имеют одинаковый знак; а через S – площадь частей, состоящих из точек с координатами разных знаков. Найдите величину  S+S.

ВверхВниз   Решение


Пять отрезков провели (не отрывая карандаша от бумаги) так, что получилась пятиугольная звезда, разделённая проведёнными отрезками на пять треугольников и пятиугольник. Оказалось, что все пять треугольников равны. Обязательно ли пятиугольник правильный?

ВверхВниз   Решение


Турнир Городов проводится раз в год. Сейчас год проведения осеннего тура делится на номер турнира:  2021:43 = 47.  Сколько ещё раз человечество сможет наблюдать это удивительное явление?

ВверхВниз   Решение


Найдите какой-нибудь многочлен с целыми коэффициентами, корнем которого является число   + .

ВверхВниз   Решение


Докажите, что в правильном двенадцатиугольнике A1A2...A12 диагонали A1A5, A2A6, A3A8 и A4A11 пересекаются в одной точке.

Вверх   Решение

Задача 79592
Темы:    [ Правильные многоугольники ]
[ Свойства биссектрис, конкуррентность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

Докажите, что в правильном двенадцатиугольнике A1A2...A12 диагонали A1A5, A2A6, A3A8 и A4A11 пересекаются в одной точке.


Решение

Рассмотрим треугольник A2A4A8. Прямые A2A6, A3A8 и A4A11 — биссектрисы его углов. Точно так же прямые A3A8, A5A1 и A11A4 – биссектрисы углов треугольника A3A5A11. Отсюда следует, что диагонали A1A5, A2A6, A3A8 и A4A11 проходят через одну точку.

Замечания

В "Задачнике Кванта" задача была в следующей формулировке:
  Докажите, что в правильном двенадцатиугольнике существуют четыре диагонали, не проходящие через центр многоугольника и пересекающиеся в одной точке.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 54
Год 1991
вариант
Класс 9
задача
Номер 3
журнал
Название "Квант"
год
Год 1991
выпуск
Номер 7
Задача
Номер М1291а

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .