Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 10 задач
Версия для печати
Убрать все задачи

В круг вписан правильный треугольник. Найдите отношение объёмов тел, полученных от вращения круга и треугольника вокруг диаметра, проходящего через вершину треугольника. В ответе укажите отношение меньшего объёма к большему (с точностью до сотых).

Вниз   Решение


В десятичной записи положительного числа α отброшены все десятичные знаки, начиная с третьего знака после запятой (то есть взято приближение α с недостатком с точностью до 0, 01). Полученное число делится на α и частное снова округляется с недостатком с той же точностью. Какие числа при этом могут получиться?

ВверхВниз   Решение


Пять друзей подошли к реке и обнаружили на берегу лодку, в которой могут поместиться все пятеро. Они решили покататься на лодке. Каждый раз с одного берега на другой переправляется компания из одного или нескольких человек. Друзья хотят организовать катание так, чтобы каждая возможная компания переправилась ровно один раз. Получится ли у них это сделать?

ВверхВниз   Решение


Диагональ боковой грани правильной треугольной призмы, равная 6, составляет угол 30o с плоскостью другой боковой грани. Найдите объём призмы.

ВверхВниз   Решение


В пространстве расположен выпуклый многогранник, все вершины которого находятся в целых точках. Других целых точек внутри, на гранях и на рёбрах нет. (Целой называется точка, все три координаты которой – целые числа.) Доказать, что число вершин многогранника не превосходит восьми.

ВверхВниз   Решение


Дан прямоугольный параллелепипед ABCDA1B1C1D1 , в котором AB =2 , AD = 4 , BB1 = 12 . Точки M и K расположены на рёбрах CC1 и AD соответственно, причём CM:MC1 = 1:2 , AK = KD . Найдите угол между прямыми AM и KB1 .

ВверхВниз   Решение


В Швамбрании некоторые города связаны двусторонними беспосадочными авиарейсами. Рейсы разделены между тремя авиакомпаниями, причём если какая-то авиакомпания обслуживает линию между городами А и Б, то самолёты других компаний между этими городами не летают. Известно, что из каждого города летают самолёты всех трёх компаний. Докажите, что можно, вылетев из некоторого города, вернуться в него, воспользовавшись по пути рейсами всех трёх компаний и не побывав ни в одном из промежуточных городов дважды.

ВверхВниз   Решение


На стороне AB треугольника ABC выбрана точка M. В треугольнике ACM точка I1 – центр вписанной, J1 – центр вневписанной окружности, касающейся стороны CM. В треугольнике BCM точка I2 – центр вписанной, J2 центр вневписанной окружности, касающейся стороны CM. Докажите, что прямая, проходящая через середины отрезков I1I2 и J1J2 перпендикулярна AB.

ВверхВниз   Решение


Дан прямоугольный треугольник $ABC$ с прямым углом $C$. Прямая проходящая через середину его высоты $CH$ и вершину $A$ пересекает $CB$ в точке $K$. Пусть $L$ – середина $BC$, а $T$ – точка на отрезке $AB$ такая, что $\angle ATK=\angle LTB$. Известно, что $BC=1$. Найдите периметр треугольника $KTL$.

ВверхВниз   Решение


На рёбрах AB , BC и BD пирамиды ABCD взяты точки K , L и M соответственно. Постройте точку пересечения плоскостей ACM , CDK и ADL .

Вверх   Решение

Задача 87622
Темы:    [ Построение сечений ]
[ Построения на проекционном чертеже ]
Сложность: 3
Классы: 10,11
Из корзины
Прислать комментарий

Условие

На рёбрах AB , BC и BD пирамиды ABCD взяты точки K , L и M соответственно. Постройте точку пересечения плоскостей ACM , CDK и ADL .

Решение

Пусть прямые DK и AM пересекаются в точке P . Тогда точка P лежит в плоскости CDK и в плоскости ACM . Значит, точка P принадлежит прямой пересечения плоскостей CDK и ACM , а т.к. C – также общая точка плоскостей CDK и ACM , то эти плоскости пересекаются по прямой CP . Пусть прямые CM и DL пересекаются в точке Q . Тогда точка Q лежит в плоскости ACM и в плоскости ADL . Значит, точка Q принадлежит прямой пересечения плоскостей ACM и ADL , а т.к. A – также общая точка плоскостей ACM и ADL , то эти плоскости пересекаются по прямой AQ . Пусть F – точка пересечения прямых CP и AQ , лежащих в плоскости ACM . Тогда точка F принадлежит каждой из плоскостей ACM , CDK и ADL . Следовательно, F – точка пересечения этих плоскостей.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
неизвестно
Номер 8225

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .