Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 13 задач
Версия для печати
Убрать все задачи

Два правильных равных треугольника расположены в пространстве в параллельных плоскостях P1 и P2, причём отрезок, соединяющий их центры, перпендикулярен плоскостям. Найти геометрическое место точек, являющихся серединами отрезков, соединяющих точки одного треугольника с точками другого треугольника.

Вниз   Решение


Играют двое, ходят по очереди. Первый ставит на плоскости красную точку, второй в ответ ставит на свободные места 10 синих точек. Затем опять первый ставит на свободное место красную точку, второй ставит на свободные места 10 синих, и т.д. Первый считается выигравшим, если какие-то три красные точки образуют правильный треугольник. Может ли второй ему помешать?

ВверхВниз   Решение


Было семь ящиков. В некоторые из них положили еще по семь ящиков (не вложенных друг в друга) и т. д. В итоге стало 10 непустых ящиков.
Сколько всего стало ящиков?

ВверхВниз   Решение


Площадь треугольника ABC равна 2. Найдите площадь сечения пирамиды ABCD плоскостью, проходящей через середины рёбер AD , BD , CD .

ВверхВниз   Решение


У Гриши есть 5000 рублей. В магазине продаются шоколадные зайцы по цене 45 рублей за штуку. Чтобы отнести зайцев домой, Грише придется купить ещё несколько сумок по 30 рублей за штуку. В одну сумку помещается не более 30 шоколадных зайцев. Гриша купил наибольшее возможное количество зайцев и достаточное количество сумок, чтобы донести в них всех зайцев. Сколько денег осталось у Гриши?

ВверхВниз   Решение


а) Квадрат разрезан на равные прямоугольные треугольники с катетами 3 и 4 каждый. Докажите, что число треугольников чётно.

б) Прямоугольник разрезан на равные прямоугольные треугольники с катетами 1 и 2 каждый. Докажите, что число треугольников чётно.

ВверхВниз   Решение


У равнобедренного треугольника стороны равны 3 и 7. Какая из сторон является основанием?

ВверхВниз   Решение


Составьте уравнение плоскости, проходящей через точку M(-2;0;3) параллельно плоскости 2x - y - 3z + 5 = 0 .

ВверхВниз   Решение


Точка E – середина той дуги AB описанной окружности треугольника ABC, на которой лежит точка C; C1 – середина стороны AB. Из точки E опущен перпендикуляр EF на AC. Докажите, что:
  а) прямая C1F делит пополам периметр треугольника ABC;
  б) три такие прямые, построенные для каждой стороны треугольника, пересекаются в одной точке.

ВверхВниз   Решение


На сторонах AB, BC и CA треугольника ABC (или на их продолжениях) взяты точки C1, A1 и B1 так, что  ∠(CC1, AB) = ∠(AA1, BC) = ∠(BB1, CA) = α.  Прямые AA1 и BB1, BB1 и CC1, CC1 и AA1 пересекаются в точках C', A', B' соответственно. Докажите, что:
  а) точка пересечения высот треугольника ABC совпадает с центром описанной окружности треугольника A'B'C';
  б) треугольники A'B'C' и ABC подобны, причём коэффициент подобия равен  2 cos α.

ВверхВниз   Решение


Через точку A , лежащую на окружности с центром O, проведены диаметр AB и хорда AC. Докажите, что угол BAC вдвое меньше угла BOC.

ВверхВниз   Решение


На сторонах треугольника ABC внешним образом построены квадраты с центрами A1, B1 и C1. Пусть a1, b1 и c1 – длины сторон треугольника A1B1C1, S и S1 – площади треугольников ABC и A1B1C1. Докажите, что:
  а)  
  б)   S1S = 1/8 (a² + b² + c²).

ВверхВниз   Решение


Автор: Назаров Ф.

В ряд стоят 15 слонов, каждый из которых весит целое число килограммов. Если взять любого слона, кроме стоящего справа, и прибавить к его весу удвоенный вес его правого соседа, то получится 15 тонн (для каждого из 14 слонов). Найдите вес каждого из 15 слонов.

Вверх   Решение

Задача 98047
Темы:    [ Уравнения в целых числах ]
[ Системы линейных уравнений ]
[ Текстовые задачи (прочее) ]
Сложность: 3+
Классы: 7,8,9
Из корзины
Прислать комментарий

Условие

Автор: Назаров Ф.

В ряд стоят 15 слонов, каждый из которых весит целое число килограммов. Если взять любого слона, кроме стоящего справа, и прибавить к его весу удвоенный вес его правого соседа, то получится 15 тонн (для каждого из 14 слонов). Найдите вес каждого из 15 слонов.


Решение

Занумеруем слонов слева направо от 1 до 15. Обозначим вес слона с номером i через  5000 + xi  кг  (i = 1, ..., 15).  Тогда  (5000 + xi) + 2(5000 + xi+1) = 15000,  то есть  xi = – 2xi+1.  Значит,  x1 = – 2x2 = 2²x3 = – 2³x4 = ... = 214x15.  Если  x15 > 0,  то  x15 ≥ 1,  x1 ≥ 214 = 16384,  и вес первого слона превышает 15 т. Аналогичным образом приходим к противоречию при  x15 < 0.  Значит,  x15 = 0,  тогда  x1 = x2 = ... = x15 = 0,  и вес каждого слона равен 5 т.


Ответ

Вес каждого слона равен 5 т.

Замечания

8 баллов

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 1989/1990
Номер 11
вариант
Вариант весенний тур, основной вариант, 8-9 класс
Задача
Номер 3
web-сайт
задача

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .