ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что в прямоугольном треугольнике с углом $30$ градусов одна биссектриса в два раза короче другой. В таблице 2005×2006 расставлены числа 0, 1, 2 так, что сумма чисел в каждом столбце и в каждой строке делится на 3. Пусть в прямоугольном треугольнике AB и AC – катеты, AC > AB. На AC выбрана точка E, а на BC – точка D так, что AB = AE = BD. В параллелограмме ABCD точка E – середина AD. Точка F – основание перпендикуляра, опущенного из B на прямую CE. В футбольном турнире в один круг участвовало 28 команд. По окончании турнира
оказалось, что более ¾ всех игр закончилось вничью. Существуют ли такие 100 треугольников, ни один из которых нельзя покрыть 99 остальными? Имеется 25 кусков сыра разного веса. Всегда ли можно один из этих кусков разрезать на две части и разложить сыр в два пакета так, что части разрезанного куска окажутся в разных пакетах, веса пакетов будут одинаковы и число кусков в пакетах также будет одинаково? Числа 1, 2, 3, ..., 25 расставляют в таблицу 5×5 так, чтобы в каждой строке числа были расположены в порядке возрастания. Докажите, что произведение всех целых чисел от 21917 + 1 до 21991 – 1 включительно не есть квадрат целого числа. Докажите неравенство Можно ли нарисовать на плоскости четыре красных и четыре чёрных точки так, чтобы для каждой тройки точек одного цвета нашлась такая точка другого цвета, что эти четыре точки являются вершинами параллелограмма? Последовательность натуральных чисел a1, a2, ..., an, ... такова, что для каждого n уравнение an+2x² + an+1x + an = 0 имеет действительный корень. Может ли число членов этой последовательности быть Квадрат разрезали на 25 квадратиков, из которых ровно у одного сторона имеет длину, отличную от 1 (у каждого из остальных сторона равна 1). Существует ли такое N и такие N – 1 бесконечных арифметических прогрессий с разностями 2, 3, 4, ..., N, что каждое натуральное число принадлежит хотя бы одной из этих прогрессий? Можно ли в таблицу 9×9 расставить такие натуральные числа, что одновременно выполняются следующие условия: Куб разрезали на 99 кубиков, из которых ровно у одного ребро имеет длину,
отличную от 1 (у каждого из остальных ребро равно 1). а) Определение (смотри в справочнике)
функций gk,l(x) не позволяет вычислять их значения при x = 1. Но, поскольку функции gk,l(x) являются многочленами, они определены и при x = 1. Докажите равенство б) Какие свойства биномиальных коэффициентов получаются, если в свойства б) – г) из задачи 61522 подставить значение x = 1? Найдите сумму Sl(x) = g0,l(x) – g1,l–1(x) + g2,l–2(x) – ... + (–1)lgl,0(x). Десятичные записи натуральных чисел выписаны подряд, начиная с единицы,
до некоторого n включительно: 12345678910111213...(n). Найдите геометрическое место точек, лежащих внутри куба и равноудалённых от трёх скрещивающихся рёбер a, b, c этого куба. |
Задача 98323
УсловиеНайдите геометрическое место точек, лежащих внутри куба и равноудалённых от трёх скрещивающихся рёбер a, b, c этого куба. Решение Расположим систему координат так, чтобы вершины куба ABCDA'B'C'D'
имели координаты: A(0, 0, 0), B(1, 0, 0), D(0, 1, 0), A'(0, 0, 1). ОтветБольшая диагональ куба, не имеющая общих точек с рёбрами a, b, c. Замечания1. Рёбра BB', CD и A'D переходят друг в друга при повороте куба вокруг диагонали AC' на 120°. Отсюда сразу видно, что все точки диагонали AC' равноудалены от этих рёбер. К сожалению, эта красивая идея не даёт возможности доказать, что искомое геометрическое место не содержит точек вне этой диагонали. 2. 3 балла. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке