ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Внутри треугольника ABC взята точка O; прямые AO, BO и CO пересекают его стороны в точках A1, B1 и C1. Докажите, что: а) + + = 1; б) . . = 1. Решение |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 69]
S2 = (p - a)(p - b)(p - c)(p - d )- abcd cos2((B + D)/2),
где p — полупериметр, a, b, c, d — длины сторон.
б) Докажите, что если четырехугольник ABCD вписанный, то S2 = (p - a)(p - b)(p - c)(p - d ). в) Докажите, что если четырехугольник ABCD описанный, то S2 = abcd sin2((B + D)/2).
а) + + = 1; б) . . = 1.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 69] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|