ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 25]      



Задача 105049

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Тождественные преобразования ]
Сложность: 3-
Классы: 7,8,9

Найдите какие-нибудь четыре попарно различных натуральных числа a, b, c, d, для которых числа  a² + 2cd + b²  и  c² + 2ab + d²  являются полными квадратами.

Прислать комментарий     Решение

Задача 34837

Темы:   [ Исследование квадратного трехчлена ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 3
Классы: 8,9,10

Про действительные числа a, b, c известно, что  (a + b + c)c < 0.  Докажите, что  b² – 4ac > 0.

Прислать комментарий     Решение

Задача 105047

Темы:   [ Обыкновенные дроби ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 3
Классы: 7,8,9

Сравнив дроби  111110/111111222221/222223333331/333334,  расположите их в порядке возрастания.

Прислать комментарий     Решение

Задача 105050

Темы:   [ Деление с остатком ]
[ Теория алгоритмов (прочее) ]
Сложность: 3
Классы: 6,7,8

Петин счет в банке содержит 500 долларов. Банк разрешает совершать операции только двух видов: снимать 300 долларов или добавлять 198 долларов.
Какую максимальную сумму Петя может снять со счета, если других денег у него нет?

Прислать комментарий     Решение

Задача 105053

Темы:   [ Инварианты ]
[ Средние величины ]
Сложность: 3
Классы: 7,8,9

На доске в лаборатории написаны два числа. Каждый день старший научный сотрудник Петя стирает с доски оба числа и пишет вместо них их среднее арифметическое и среднее гармоническое. Утром первого дня на доске были написаны числа 1 и 2. Найдите произведение чисел, записанных на доске вечером 1999-го дня.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 25]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .