ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 43]      



Задача 116263

Темы:   [ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3-
Классы: 8,9

По кругу написаны все целые числа от 1 по 2010 в таком порядке, что при движении по часовой стрелке числа поочередно то возрастают, то убывают.
Докажите, что разность каких-то двух чисел, стоящих рядом, чётна.

Прислать комментарий     Решение

Задача 116025

Темы:   [ Шахматная раскраска ]
[ Числовые таблицы и их свойства ]
[ Средние величины ]
Сложность: 3
Классы: 7,8,9

Автор: Прика С.

В пифагоровой таблице умножения выделили прямоугольную рамку толщиной в одну клетку, причём каждая сторона рамки состоит из нечётного числа клеток. Клетки рамки поочередно раскрасили в два цвета – чёрный и белый. Докажите, что сумма чисел в чёрных клетках равна сумме чисел в белых клетках.
Пифагорова таблица умножения – это клетчатая таблица, в которой на пересечении m-й строки и n-го столбца стоит число mn (для любых натуральных m и n).

Прислать комментарий     Решение

Задача 116026

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Площадь трапеции ]
[ Перегруппировка площадей ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9

Равнобедренная трапеция описана около окружности. Докажите, что биссектриса тупого угла этой трапеции делит её площадь пополам.

Прислать комментарий     Решение

Задача 116027

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3
Классы: 7,8,9

На шахматной доске 8×8 стоит кубик (нижняя грань совпадает с одной из клеток доски). Его прокатили по доске, перекатывая через рёбра, так, что кубик побывал на всех клетках (на некоторых, возможно, несколько раз). Могло ли случиться, что одна из его граней ни разу не лежала на доске?

Прислать комментарий     Решение

Задача 116042

Тема:   [ Симметрия и построения ]
Сложность: 3
Классы: 8,9

На плоскости дана прямая. С помощью пятака постройте две точки какой-нибудь прямой, перпендикулярной данной. Разрешаются такие операции: отметить точку, приложить пятак к ней и обвести его; отметить две точки (на расстоянии меньше диаметра пятака), приложить пятак к ним и обвести его. Нет возможности прикладывать пятак к прямой так, чтобы она его касалась.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 43]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .