ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 116178

Темы:   [ Построение треугольников по различным элементам ]
[ ГМТ - окружность или дуга окружности ]
[ Метод ГМТ ]
[ Гомотетия (ГМТ) ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Постройте треугольник по стороне, противолежащему углу и медиане, проведенной к другой стороне (исследование вопроса о количестве решений не требуется).

Прислать комментарий     Решение

Задача 116179

Темы:   [ Признаки равенства прямоугольных треугольников ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Медиана, проведенная к гипотенузе ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

В выпуклом четырёхугольнике ABCD  ∠ABC = 90°,  ∠BAC = ∠CAD,  AC = AD,  DH – высота треугольника ACD.
В каком отношении прямая BH делит отрезок CD?

Прислать комментарий     Решение

Задача 116180

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 9,10

Внутри отрезка АС выбрана произвольная точка В и построены окружности с диаметрами АВ и ВС. На окружностях (в одной полуплоскости относительно АС) выбраны соответственно точки M и L так, что  ∠MBA = ∠LBC.  Точки K и F отмечены соответственно на лучах ВМ и BL так, что
BK = BC  и  BF = AB. Докажите, что точки M, K, F и L лежат на одной окружности.

Прислать комментарий     Решение

Задача 116182

Темы:   [ Средняя линия треугольника ]
[ Конкуррентность высот. Углы между высотами. ]
[ Теоремы Чевы и Менелая ]
Сложность: 4-
Классы: 9,10

Дан треугольник АВС. Точка О1 – центр прямоугольника ВСDE, построенного так, что сторона DE прямоугольника содержит вершину А треугольника. Точки О2 и О3 являются центрами прямоугольников, построенных аналогичным образом на сторонах АС и АВ соответственно. Докажите, что прямые АО1, ВО2 и СО3 пересекаются в одной точке.

Прислать комментарий     Решение

Задача 116181

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Две касательные, проведенные из одной точки ]
[ Гомотетия помогает решить задачу ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4
Классы: 9,10

В треугольнике ABC M – точка пересечения медиан, O – центр вписанной окружности, A', B', C' – точки ее касания со сторонами BC, CA, AB соответственно. Докажите, что, если CA' = AB, то прямые OM и AB перпендикулярны.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .