ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 153]      



Задача 116350

Темы:   [ Теоремы Чевы и Менелая ]
[ Признаки подобия ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Центр масс ]
Сложность: 3-
Классы: 8,9,10

Точки M и N расположены соответственно на сторонах AB и AC треугольника ABC, причём  AM : MB = 1 : 2,  AN : NC = 3 : 2.  Прямая MN пересекает продолжение стороны BC в точке F. Найдите  CF : BC.

Прислать комментарий     Решение

Задача 53859

Темы:   [ Теоремы Чевы и Менелая ]
[ Средняя линия треугольника ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9

Через точку P, лежащую на медиане CC1 треугольника ABC, проведены прямые AA1 и BB1 (точки A1 и B1 лежат на сторонах BC и CA соответственно).
Докажите, что  A1B1 || AB.

Прислать комментарий     Решение

Задача 53856

 [Теорема Чевы]
Темы:   [ Теоремы Чевы и Менелая ]
[ Две пары подобных треугольников ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношение площадей треугольников с общим углом ]
[ Центр масс ]
Сложность: 4-
Классы: 8,9

Пусть точки A1, B1 и C1 принадлежат сторонам соответственно BC, AC и AB треугольника ABC.
Докажите, что отрезки AA1, BB1, CC1 пересекаются в одной точке тогда и только тогда, когда  

Прислать комментарий     Решение

Задача 53857

 [Теорема Менелая]
Темы:   [ Теоремы Чевы и Менелая ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 8,9

Дан треугольник ABC. Некоторая прямая пересекает его стороны AB, BC и продолжение стороны AC в точках C1, A1, B1 соответственно. Докажите, что

Прислать комментарий     Решение

Задача 52953

Темы:   [ Теоремы Чевы и Менелая ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 4
Классы: 8,9

В треугольнике ABC сторона AB равна 4, угол CAB равен 30o, а радиус описанной окружности равен 3. Докажите, что высота, опущенная из вершины C на сторону AB, меньше 3.

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 153]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .