ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На отрезке AE по одну сторону от него построены равносторонние
треугольники ABC и CDE; M и P — середины отрезков
AD и BE. Докажите, что треугольник CPM равносторонний.
Решите уравнения а) φ(x) = 2; б) φ(x) = 8; в) φ(x) = 12; г) φ(x) = 14. Существует ли фигура, не имеющая ни осей симметрии, ни центров симметрии, но переходящая в себя при некотором повороте? Пусть z = x + iy, w = u + iv. Найдите На сторонах BC и CD параллелограмма ABCD
построены внешним образом правильные треугольники BCP
и CDQ. Докажите, что треугольник APQ правильный.
Докажите, что при центральной симметрии окружность переходит в окружность.
Разделите данный отрезок пополам с помощью линейки с параллельными краями и без делений.
Вычислите Дан прямоугольный параллелепипед ABCDA1B1C1D1 , в котором AB =4 , AD = 2 , AA1 = 6 . Точка N – середина ребра CD , точка M расположена на ребре CC1 , причём C1M:CM = 1:2 , K – точка пересечения диагоналей грани AA1D1D . Найдите угол между прямыми KM и A1N .
Сфера с центром в точке O проходит через вершины A , B и C
треугольной пирамиды ABCD и пересекает прямые AD , BD и CD в точках
K , L и M соответственно. Известно, что AD = 10 , BC:BD = 3:2 и
AB:CD = 4
В трапеции ABCD углы A и D при основании AD соответственно равны 60o и 90o. Точка N лежит на основании BC, причём BN : BC = 2 : 3. Точка M лежит на основании AD, прямая MN параллельна боковой стороне AB и делит площадь трапеции пополам. Найдите AB : BC.
Вычислите Решить уравнение [x³] + [x²] + [x] = {x} − 1. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 54]
Решить уравнение [x³] + [x²] + [x] = {x} − 1.
Сколько решений в натуральных числах имеет уравнение [x/10] = [x/11] + 1?
Существуют ли нецелые числа x и y, для которых {x}{y} = {x + y}?
Найти число решений в натуральных числах уравнения [x/10] = [x/11] + 1.
Решите неравенство: [x]·{x} < x – 1.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 54]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке