Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

На отрезке AE по одну сторону от него построены равносторонние треугольники ABC и CDE; M и P — середины отрезков AD и BE. Докажите, что треугольник CPM равносторонний.

Вниз   Решение


Решите уравнения   а)  φ(x) = 2;   б)  φ(x) = 8;   в)  φ(x) = 12;   г)  φ(x) = 14.

ВверхВниз   Решение


Существует ли фигура, не имеющая ни осей симметрии, ни центров симметрии, но переходящая в себя при некотором повороте?

ВверхВниз   Решение


Пусть  z = x + iy,  w = u + iv.  Найдите
  а)  z + w;   б)  zw;   в)  z/w.

ВверхВниз   Решение


На сторонах BC и CD параллелограмма ABCD построены внешним образом правильные треугольники BCP и CDQ. Докажите, что треугольник APQ правильный.

ВверхВниз   Решение


Докажите, что при центральной симметрии окружность переходит в окружность.

ВверхВниз   Решение


Разделите данный отрезок пополам с помощью линейки с параллельными краями и без делений.

ВверхВниз   Решение


Вычислите $\int_0^{\pi /2}(\sin ^2 (\sin x)+ \cos^2(\cos x)) dx$.

ВверхВниз   Решение


Дан прямоугольный параллелепипед ABCDA1B1C1D1 , в котором AB =4 , AD = 2 , AA1 = 6 . Точка N – середина ребра CD , точка M расположена на ребре CC1 , причём C1M:CM = 1:2 , K – точка пересечения диагоналей грани AA1D1D . Найдите угол между прямыми KM и A1N .

ВверхВниз   Решение


Сфера с центром в точке O проходит через вершины A , B и C треугольной пирамиды ABCD и пересекает прямые AD , BD и CD в точках K , L и M соответственно. Известно, что AD = 10 , BC:BD = 3:2 и AB:CD = 4:11 . Проекциями точки O на плоскости ABD, BCD и CAD являются середины рёбер AB , BC и AC соответственно. Расстояние между серединами рёбер AB и CD равно 13. Найдите периметр треугольника KLM .

ВверхВниз   Решение


В трапеции ABCD углы A и D при основании AD соответственно равны 60o и 90o. Точка N лежит на основании BC, причём BN : BC = 2 : 3. Точка M лежит на основании AD, прямая MN параллельна боковой стороне AB и делит площадь трапеции пополам. Найдите AB : BC.

ВверхВниз   Решение


Вычислите
  а)  ;   б)  ;   в)  ;   г)  ;   д)  ;   е)  .

ВверхВниз   Решение


Решить уравнение  [x³] + [x²] + [x] = {x} − 1.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 54]      



Задача 102797

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Уравнения высших степеней (прочее) ]
Сложность: 2+
Классы: 7,8,9

Решить уравнение  [x³] + [x²] + [x] = {x} − 1.

Прислать комментарий     Решение

Задача 31371

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 8,9,10

Сколько решений в натуральных числах имеет уравнение   [x/10] = [x/11] + 1?

Прислать комментарий     Решение

Задача 66328

Тема:   [ Целая и дробная части. Принцип Архимеда ]
Сложность: 3
Классы: 8,9,10,11

Существуют ли нецелые числа x и y, для которых  {x}{y} = {x + y}?

Прислать комментарий     Решение

Задача 98025

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Уравнения в целых числах ]
[ Правило произведения ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Найти число решений в натуральных числах уравнения   [x/10] = [x/11] + 1.

Прислать комментарий     Решение

Задача 116627

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Решите неравенство:  [x]·{x} < x – 1.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 54]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .