Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

Высота трапеции ABCD равна 7, основания AD и BC равны соответственно 8 и 6. Через точку E, лежащую на стороне CD, проведена прямая BE, которая делит диагональ AC в точке O в отношении  AO : OC = 3 : 2.  Найдите площадь треугольника OEC.

Вниз   Решение


Докажите, что для чисел Люка Ln (см. задачу 60585) выполнено соотношение  

ВверхВниз   Решение


Бумажный прямоугольный треугольник перегнули по прямой так, что вершина прямого угла совместилась с другой вершиной.
  а) В каком отношении делятся диагонали полученного четырёхугольника их точкой пересечения?
  б) Полученный четырёхугольник разрезали по диагонали, выходящей из третьей вершины исходного треугольника. Найти площадь наименьшего образовавшегося куска бумаги.

ВверхВниз   Решение


Дан треугольник ABC. Найдите внутри его точку O, для которой сумма длин отрезков OA, OB, OC минимальна. (Обратите внимание на тот случай, когда один из углов треугольника больше 120o.)

ВверхВниз   Решение


Круг разделен на 6 секторов и в них по часовой стрелке расставлены числа: 1, 0, 1, 0, 0, 0. Разрешается прибавить по единице к числам в любых двух соседних секторах. Можно ли такими операциями добиться того, чтобы все числа в секторах были одинаковыми?

ВверхВниз   Решение


В основании треугольной пирамиды NKLM лежит правильный треугольник KLM . Высота пирамиды, опущенная из вершины N , проходит через середину ребра LM . Известно, что KL = a , KN = b . Пирамиду пересекает плоскость β , параллельная рёбрам KN и LM . На каком расстоянии от вершины N должна находиться плоскость β , чтобы площадь сечения пирамиды этой плоскостью была наибольшей?

ВверхВниз   Решение


Бумажная прямоугольная полоска помещается внутри данного круга. Полоску согнули (не обязательно пополам). Докажите, что после сгибания полоску можно также разместить в этом круге.

ВверхВниз   Решение


Почтальон Печкин не хотел отдавать посылку. Тогда Матроскин предложил ему сыграть в следующую игру: каждым ходом Печкин пишет в строку слева направо буквы, произвольно чередуя М и П, пока в строке не будет всего 11 букв. Матроскин после каждого его хода, если хочет, меняет местами любые две буквы. Если в итоге окажется, что записанное слово является палиндромом (то есть одинаково читается слева направо и справо налево), то Печкин отдаёт посылку. Сможет ли Матроскин играть так, чтобы обязательно получить посылку?

ВверхВниз   Решение


Трапеция AEFG  (EF || AG)  расположена в квадрате ABCD со стороной 14 так, что точки E, F и G лежат на сторонах AB, BC и CD соответственно. Диагонали AF и EG перпендикулярны,  EG = 10.  Найдите периметр трапеции.

ВверхВниз   Решение


Известно, что число 2n для некоторого натурального n является суммой двух точных квадратов.
Докажите, что n также является суммой двух точных квадратов.

ВверхВниз   Решение


Автор: Дидин М.

Выпуклый $n$-угольник  ($n$ > 4)  обладает таким свойством: если диагональ отсекает от него треугольник, то этот треугольник равнобедренный. Докажите, что среди любых четырёх сторон этого n-угольника есть хотя бы две равных.

ВверхВниз   Решение


В пространстве расположено n отрезков, никакие три из которых не параллельны одной плоскости. Для любых двух отрезков прямая, соединяющая их середины, перпендикулярна обоим отрезкам. При каком наибольшем n это возможно?

ВверхВниз   Решение


Автор: Гичев В.М.

Можно ли представить число $11^{2018}$ в виде суммы кубов двух натуральных чисел?

ВверхВниз   Решение


Существует ли набор чисел, сумма которых равна 1, а сумма их квадратов меньше 0,01?

ВверхВниз   Решение


Функция  f(x) определена для всех действительных чисел, причем для любого x выполняются равенства  f(x + 2) = f(2 – x)  и  f(x + 7) = f(7 – x).
Докажите, что  f(x) – периодическая функция.

ВверхВниз   Решение


Пусть h1 и h2 — высоты треугольника, r — радиус вписанной окружности. Докажите, что $ {\frac{1}{2r}}$ < $ {\frac{1}{h_{1}}}$ + $ {\frac{1}{h_{2}}}$ < $ {\frac{1}{r}}$.

ВверхВниз   Решение


Пусть O — центр вписанной окружности треугольника ABC. Докажите, что  $ {\frac{OA^2}{bc}}$ + $ {\frac{OB^2}{ac}}$ + $ {\frac{OC^2}{ab}}$ = 1.

ВверхВниз   Решение


Выпуклый n-угольник помещен в квадрат со стороной 1. Докажите, что найдутся три такие вершины A, B и C этого n-угольника, что площадь треугольника ABC не превосходит: а) 8/n2; б) 16$ \pi$/n3.

ВверхВниз   Решение


Диаметр AB и хорда CD пересекаются в точке M, $ \angle$CMB = 73o, угловая величина дуги BC равна 110o. Найдите величину дуги BD.

ВверхВниз   Решение


На кружок пришли дети из двух классов: Ваня, Дима, Егор, Инна, Леша, Саша и Таня. На вопрос: "Сколько здесь твоих одноклассников?" каждый честно ответил "Двое" или "Трое". Но мальчики думали, что спрашивают только про мальчиков-одноклассников, а девочки правильно понимали, что спрашивают про всех. Кто Саша – мальчик или девочка?

ВверхВниз   Решение


На координатной плоскости дан выпуклый пятиугольник ABCDE с вершинами в целых точках. Докажите, что внутри или на границе пятиугольника A1B1C1D1E1 (см. рис.) есть хотя бы одна целая точка.


Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 49]      



Задача 58202

Тема:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
Сложность: 5
Классы: 9,10

Существует ли правильный треугольник с вершинами в узлах целочисленной решетки?
Прислать комментарий     Решение


Задача 58207

Тема:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
Сложность: 5
Классы: 9,10

Вершины выпуклого многоугольника расположены в узлах целочисленной решётки, причём ни одна из его сторон не проходит по линиям решётки. Докажите, что сумма длин горизонтальных отрезков линий решётки, заключённых внутри многоугольника, равна сумме длин вертикальных отрезков.
Прислать комментарий     Решение


Задача 60868

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Правильные многоугольники ]
[ Метод спуска ]
[ Доказательство от противного ]
[ Рациональные и иррациональные числа ]
[ Целочисленные и целозначные многочлены ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 5
Классы: 9,10,11

Дан лист клетчатой бумаги. Докажите, что при  n ≠ 4  не существует правильного n-угольника с вершинами в узлах решетки.

Прислать комментарий     Решение

Задача 109709

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Наименьшая или наибольшая площадь (объем) ]
[ Пятиугольники ]
[ Теорема Пика ]
Сложность: 5
Классы: 8,9,10,11

На координатной плоскости дан выпуклый пятиугольник ABCDE с вершинами в целых точках. Докажите, что внутри или на границе пятиугольника A1B1C1D1E1 (см. рис.) есть хотя бы одна целая точка.


Прислать комментарий     Решение

Задача 58203

Тема:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
Сложность: 5+
Классы: 9,10

Докажите, что при n ≠ 4 правильный n-угольник нельзя расположить так, чтобы его вершины оказались в узлах целочисленной решетки.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .