Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 80]
Одновременно из деревень A и Б навстречу друг другу вышли Аня и Боря (их скорости постоянны, но не обязательно одинаковы). Если бы Аня вышла на 30 минут раньше, то они встретились бы на 2 км ближе к деревне Б. Если бы Боря вышел на 30 минут раньше, то встреча состоялась бы ближе к деревне A. На сколько?
|
|
Сложность: 3+ Классы: 9,10,11
|
Приведите пример многочлена P(x) степени 2001, для которого P(x) + P(1 – x) ≡ 1.
|
|
Сложность: 3+ Классы: 8,9,10
|
Угол, образованный лучами y = x и y = 2x при x ≥ 0, высекает на параболе y = x² + px + q две дуги. Эти дуги спроектированы на ось Ox. Докажите, что проекция левой дуги на 1 короче проекции правой.
|
|
Сложность: 3+ Классы: 7,8,9
|
Девять лыжников ушли со старта по очереди и прошли дистанцию – каждый со своей постоянной скоростью. Могло ли оказаться, что каждый лыжник участвовал ровно в четырёх обгонах? (В каждом обгоне участвуют ровно два лыжника – тот, кто обгоняет, и тот, кого обгоняют.)
|
|
Сложность: 3+ Классы: 9,10,11
|
Найдите такое значение $a > 1$, при котором уравнение $a^x = \log_a x$ имеет единственное решение.
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 80]