ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 221]      



Задача 111573

Темы:   [ Вспомогательные равные треугольники ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Прямоугольный треугольник с углом в 30° ]
Сложность: 3
Классы: 8,9

Прямоугольный лист бумаги ABCD согнули так, как показано на рисунке. Найдите отношение  DK : AB,  если C1 – середина AD.

Прислать комментарий     Решение

Задача 115334

Тема:   [ Вспомогательные равные треугольники ]
Сложность: 3
Классы: 8,9

На стороне AC треугольника ABC нашлись такие точки K и L, что L – середина AK и BK – биссектриса угла LBC. Оказалось, что  BC = 2BL.
Докажите, что  KC = AB.

Прислать комментарий     Решение

Задача 115335

Темы:   [ Вспомогательные равные треугольники ]
[ Вписанные четырехугольники ]
Сложность: 3
Классы: 8,9

На продолжении стороны AD вписанного четырёхугольника ABCD за точку D отмечена такая точка E, что  AC = CE и  ∠BDC = ∠DEC.
Докажите, что  AB = DE.

Прислать комментарий     Решение

Задача 115682

Темы:   [ Вспомогательные равные треугольники ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3
Классы: 8,9

На сторонах AB и BC треугольника ABC построены внешним образом квадраты ABDE и BCPG. Оказалось, что прямая DG параллельна прямой AC.
Докажите, что треугольник ABC – равнобедренный.

Прислать комментарий     Решение

Задача 116066

Темы:   [ Вспомогательные равные треугольники ]
[ Поворот помогает решить задачу ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательная окружность ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Два равносторонних треугольника ABC и CDE имеют общую вершину (см. рис). Найдите угол между прямыми AD и BE.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 221]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .