ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Берлов С.Л.

Сергей Львович Берлов - преподаватель физико-математического лицея 239 города Санкт-Петербурга, кандидат физико-математических наук, член жюри Всероссийской олимпиады школьников по математике, серебряный призер Международной математической олимпиады 1988 г.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 118]      



Задача 109714

Темы:   [ Числовые таблицы и их свойства ]
[ Раскраски ]
[ Правило произведения ]
[ Принцип Дирихле (прочее) ]
[ Сочетания и размещения ]
[ Доказательство от противного ]
Сложность: 5
Классы: 8,9,10,11

Клетки таблицы 100×100 окрашены в 4 цвета так, что в каждой строке и в каждом столбце ровно по 25 клеток каждого цвета.
Докажите, что найдутся две строки и два столбца, все четыре клетки на пересечении которых окрашены в разные цвета.

Прислать комментарий     Решение

Задача 109730

Темы:   [ НОД и НОК. Взаимная простота ]
[ Процессы и операции ]
[ Деление с остатком ]
[ Принцип крайнего (прочее) ]
Сложность: 5
Классы: 8,9,10

По окружности расставлено 100 натуральных чисел, взаимно простых в совокупности. Разрешается прибавлять к любому числу наибольший общий делитель его соседей. Докажите, что при помощи таких операций можно сделать все числа попарно взаимно простыми.

Прислать комментарий     Решение

Задача 109813

Темы:   [ Теория графов (прочее) ]
[ Принцип крайнего (прочее) ]
[ Раскраски ]
Сложность: 5
Классы: 8,9,10

В кабинете президента стоят 2004 телефона, любые два из которых соединены проводом одного из четырёх цветов. Известно, что провода всех четырёх цветов присутствуют. Всегда ли можно выбрать несколько телефонов так, чтобы среди соединяющих их проводов встречались провода ровно трех цветов?

Прислать комментарий     Решение

Задача 109837

Темы:   [ Разбиения на пары и группы; биекции ]
[ Индукция в геометрии ]
[ Процессы и операции ]
Сложность: 5
Классы: 8,9,10

За круглым столом сидят 100 представителей 50 стран, по двое от каждой страны. Докажите, что их можно разбить на две группы таким образом, что в каждой группе будет по одному представителю от каждой страны, и каждый человек находился в одной группе не более чем с одним своим соседом.
Прислать комментарий     Решение


Задача 111801

Темы:   [ Теория графов (прочее) ]
[ Раскраски ]
[ Подсчет двумя способами ]
[ Задачи с ограничениями ]
Сложность: 5
Классы: 8,9,10,11

Имеются три комиссии бюрократов. Известно, что для каждой пары бюрократов из разных комиссий среди членов оставшейся комиссии есть ровно 10 бюрократов, которые знакомы с обоими, и ровно 10 бюрократов, которые незнакомы с обоими. Найдите общее число бюрократов в комиссиях.

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 118]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .