ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Илья Игоревич Богданов - доцент Московского физико-технического института, кандидат физико-математических наук, член жюри Всероссийской олимпиады школьников по математике |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В пространстве даны 200 точек. Каждые две из них соединены отрезком, причём отрезки не пересекаются друг с другом. Первый игрок красит каждый отрезок в один из k цветов, затем второй игрок красит в один из тех же цветов каждую точку. Если найдутся две точки и отрезок между ними, окрашенные в один цвет, выигрывает первый игрок, в противном случае второй. Докажите, что первый может гарантировать себе выигрыш, если Даны 15 целых чисел, среди которых нет одинаковых. Петя записал на доску все возможные суммы по 7 из этих чисел, а Вася – все возможные суммы по 8 из этих чисел. Могло ли случиться, что они выписали на доску одни и те же наборы чисел? (Если какое-то число повторяется несколько раз в наборе у Пети, то и у Васи оно должно повторяться столько же раз.) С помощью циркуля и линейки опишите около данной окружности ромб с данным углом. Решить в целых числах уравнение 1/a + 1/b + 1/c = 1. Докажите, что две изотомические прямые треугольника не могут пересекаться внутри его серединного треугольника. ( Изотомическими прямыми треугольника $ABC$ называются две прямые, точки пересечения которых с прямыми $BC$, $CA$, $AB$ симметричны относительно середин соответствующих сторон треугольника.) Известно, что уравнение x4 + ax³ + 2x² + bx + 1 = 0 имеет действительный корень. Докажите неравенство a² + b² ≥ 8. Внутри треугольника $ABC$ на биссектрисе угла $A$ выбрана произвольная точка $J$. Лучи $BJ$ и $CJ$ пересекают стороны $AC$ и $AB$ в точках $K$ и $L$ соответственно. Касательная к описанной окружности треугольника $AKL$ в точке $A$ пересекает прямую $BC$ в точке $P$. Докажите, что $PA=PJ$. Докажите, что число
Докажите, что если
sin
то один из углов треугольника ABC равен
60o.
Докажите, что
16Rr - 5r2 В некоторых клетках квадрата 200×200 стоит по одной фишке – красной или синей; остальные клетки пусты. Одна фишка видит другую, если они находятся в одной строке или одном столбце. Известно, что каждая фишка видит ровно пять фишек другого цвета (и, возможно, некоторое количество фишек своего цвета). Найдите наибольшее возможное количество фишек. |
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 177]
В таблице 2005×2006 расставлены числа 0, 1, 2 так, что сумма чисел в каждом столбце и в каждой строке делится на 3.
Паша выбрал 2017 (не обязательно различных) натуральных чисел a1, a2, ..., a2017 и играет сам с собой в следующую игру. Изначально у него есть неограниченный запас камней и 2017 больших пустых коробок. За один ход Паша добавляет в любую коробку (по своему выбору) a1 камней, в любую из оставшихся коробок (по своему выбору) – a2 камней, ..., наконец, в оставшуюся коробку – a2017 камней. Пашина цель – добиться того, чтобы после некоторого хода во всех коробках стало поровну камней. Мог ли он выбрать числа так, чтобы цели можно было добиться за 43 хода, но нельзя – за меньшее ненулевое число ходов?
Изначально на стол положили 100 карточек, на каждой из которых записано по натуральному числу; при этом было ровно 43 карточки с нечётными числами. Затем каждую минуту проводилась следующая процедура. Для каждых трёх карточек, лежащих на столе, вычислялось произведение записанных на них чисел, все эти произведения складывались, и полученное число записывалось на новую карточку, которая добавлялась к лежащим на столе. Через год после начала процесса выяснилось, что на столе есть карточка с числом, кратным 210000. Докажите, что число, кратное 210000, было на одной из карточек уже через день после начала.
В некоторых клетках квадрата 200×200 стоит по одной фишке – красной или синей; остальные клетки пусты. Одна фишка видит другую, если они находятся в одной строке или одном столбце. Известно, что каждая фишка видит ровно пять фишек другого цвета (и, возможно, некоторое количество фишек своего цвета). Найдите наибольшее возможное количество фишек.
а) Торт имеет форму треугольника, в котором один угол в 3 раза больше другого. Коробка для торта имеет форму того же треугольника, но симметрична ему относительно некоторой прямой. Как разрезать торт на две части, которые можно будет (не переворачивая) уложить в эту коробку? б) Та же задача для торта в форме тупоугольного треугольника, в котором тупой угол в 2 раза больше одного из острых углов.
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 177]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке