Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шаповалов А.В.

Александр Васильевич Шаповалов (род. 1955 г.) - автор книг "Принцип узких мест", "Турнир городов: мир математики в задачах" и других популярных книг по математике. Ответственный редактор серии "Школьные математические кружки". Ведущий преподаватель Кировской ЛМШ и Московских сборов. Член методической комиссии Турнира городов, турнира им. Савина, московского Математического праздника и других соревнований. См. сайт www.ashap.info.

Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Пусть A1, B1, C1 – середины сторон треугольника ABC, I – центр вписанной в него окружности, C2 – точка пересечения прямых C1I и A1B1, C3 – точка пересечения прямых CC2 и AB. Докажите, что прямая IC3 перпендикулярна прямой AB.

Вниз   Решение


На стороне AB треугольника ABC взяты такие точки X, Y, что  AX = BY.  Прямые CX и CY вторично пересекают описанную окружность треугольника в точках U и V. Докажите, что все прямые UV проходят через одну точку.

ВверхВниз   Решение


Продавец хочет разрезать кусок сыра на части, которые можно будет разложить на две кучки равного веса. Он умеет разрезать любой кусок сыра в одном и том же отношении  a : (1 – a)  по весу, где  0 < a < 1.  Верно ли, что на любом промежутке длины 0,001 из интервала  (0, 1)  найдётся значение a, при котором он сможет добиться желаемого результата с помощью конечного числа разрезов?

Вверх   Решение

Все задачи автора

Страница: << 58 59 60 61 62 63 64 [Всего задач: 320]      



Задача 116225

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 5
Классы: 10

Две фирмы по очереди нанимают программистов, среди которых есть 4 гения. Первого программиста каждая фирма выбирает произвольно, а каждый следующий должен быть знаком с кем-то из ранее нанятых данной фирмой. Если фирма не может нанять программиста по этим правилам, она прекращает приём, а другая может продолжать. Список программистов и их знакомств заранее известен. Могут ли знакомства быть устроены так, что фирма, вступающая в игру второй, сможет нанять по крайней мере 3 гениев, как бы ни действовала первая фирма?

Прислать комментарий     Решение

Задача 116231

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Комбинаторика (прочее) ]
[ Алгебраические неравенства (прочее) ]
Сложность: 5
Классы: 10,11

Продавец хочет разрезать кусок сыра на части, которые можно будет разложить на две кучки равного веса. Он умеет разрезать любой кусок сыра в одном и том же отношении  a : (1 – a)  по весу, где  0 < a < 1.  Верно ли, что на любом промежутке длины 0,001 из интервала  (0, 1)  найдётся значение a, при котором он сможет добиться желаемого результата с помощью конечного числа разрезов?

Прислать комментарий     Решение

Задача 116286

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Теория алгоритмов (прочее) ]
[ Теория игр (прочее) ]
Сложность: 5
Классы: 10,11

Две фирмы по очереди нанимают программистов, среди которых есть 11 гениев. Первого программиста каждая фирма выбирает произвольно, а каждый следующий должен быть знаком с кем-то из ранее нанятых данной фирмой. Если фирма не может нанять программиста по этим правилам, она прекращает приём, а другая может продолжать. Список программистов и их знакомств заранее известен, включая информацию о том, кто гении. Могут ли знакомства быть устроены так, что фирма, вступающая в игру второй, сможет нанять 10 гениев, как бы ни действовала первая фирма?

Прислать комментарий     Решение

Задача 98443

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
[ Деревья ]
[ Доказательство от противного ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Замощения костями домино и плитками ]
[ Раскраски ]
[ Теорема Пика ]
Сложность: 5+
Классы: 9,10,11

Ладья, делая ходы по вертикали и горизонтали на соседнее поле, за 64 хода обошла все поля шахматной доски 8×8 и вернулась на исходное поле. Докажите, что число ходов по вертикали не равно числу ходов по горизонтали.

Прислать комментарий     Решение

Задача 107826

Темы:   [ Взвешивания ]
[ Индукция (прочее) ]
[ Арифметическая прогрессия ]
[ Рекуррентные соотношения (прочее) ]
[ Оценка + пример ]
Сложность: 5+
Классы: 7,8,9

Банкир узнал, что среди одинаковых на вид монет одна — фальшивая (более легкая). Он попросил эксперта определить эту монету с помощью чашечных весов без гирь, причем потребовал, чтобы каждая монета участвовала во взвешиваниях не более двух раз. Какое наибольшее число монет может быть у банкира, чтобы эксперт заведомо смог выделить фальшивую за n взвешиваний?
Прислать комментарий     Решение


Страница: << 58 59 60 61 62 63 64 [Всего задач: 320]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .