ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Александр Васильевич Шаповалов (род. 1955 г.) - автор книг "Принцип узких мест", "Турнир городов: мир математики в задачах" и других популярных книг по математике. Ответственный редактор серии "Школьные математические кружки". Ведущий преподаватель Кировской ЛМШ и Московских сборов. Член методической комиссии Турнира городов, турнира им. Савина, московского Математического праздника и других соревнований. См. сайт www.ashap.info. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Есть шесть кусков сыра разного веса. Известно, что можно разложить сыр на две кучки по три куска так, чтобы кучки весили поровну. Последовательность натуральных чисел a1, a2, ..., an, ... такова, что для каждого n уравнение an+2x² + an+1x + an = 0 имеет действительный корень. Может ли число членов этой последовательности быть Во вписанно-описанном четырехугольнике отметили центры O, I описанной и вписанной окружностей и середину M одной из диагоналей, после чего сам четырехугольник стерли. Восстановите его. Две окружности пересекаются в точках A и B. Третья окружность касается их обеих и пересекает прямую AB в точках C и D. Сколько (максимум) кругов можно расположить на плоскости так, чтобы каждые два из них пересекались, а никакие три – нет? Шайка разбойников отобрала у купца мешок монет. Каждая монета стоит целое число грошей. Оказалось, что какую бы монету ни отложить, оставшиеся монеты можно разделить между разбойниками так, чтобы каждый получил одинаковую сумму в грошах. Докажите, что если отложить одну монету, то число монет разделится на число разбойников. |
Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 319]
В ряд лежат 100 монет, часть – вверх орлом, а остальные – вверх решкой. За одну операцию разрешается выбрать семь монет, лежащих через равные промежутки (т.е. семь монет, лежащих подряд, или семь монет, лежащих через одну, и т.д.), и все семь монет перевернуть. Докажите, что при помощи таких операций можно все монеты положить вверх орлом.
Куб, состоящий из (2n)3 единичных кубиков, проткнут несколькими спицами, параллельными рёбрам куба. Каждая спица протыкает ровно 2n кубиков, каждый кубик проткнут хотя бы одной спицей.
Клетчатый квадрат 2×2 накрыт двумя треугольниками. Обязательно ли
Карлсон ест варенье вдвое быстрее, чем Малыш, а торт он ест втрое быстрее, чем Малыш.
Шайка разбойников отобрала у купца мешок монет. Каждая монета стоит целое число грошей. Оказалось, что какую бы монету ни отложить, оставшиеся монеты можно разделить между разбойниками так, чтобы каждый получил одинаковую сумму в грошах. Докажите, что если отложить одну монету, то число монет разделится на число разбойников.
Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 319]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке