Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 316]
|
|
Сложность: 3 Классы: 7,8,9
|
Назовем билет с номером от 000000 до 999999
отличным, если разность некоторых двух соседних цифр его номера равна 5.
Найдите число отличных билетов.
|
|
Сложность: 3 Классы: 6,7,8
|
Можно ли так расставить фишки в клетках доски 8×8, чтобы в каждых двух столбцах количество фишек было одинаковым, а в каждых двух строках – различным?
|
|
Сложность: 3 Классы: 10,11
|
На экране компьютера стоят в ряд 200 человек. На самом деле эта картинка составлена из 100 фрагментов, на каждом – пара: взрослый и ребёнок пониже ростом. Разрешается в каждом из фрагментов изменить масштаб, уменьшив при этом одновременно рост взрослого и ребёнка в одинаковое целое число раз (масштабы разных фрагментов можно менять независимо друг от друга). Докажите, что это можно сделать так, что на общей картинке все взрослые будут выше всех детей.
В таблицу 29×29 вписали числа 1, 2, 3, ..., 29, каждое по 29 раз. Оказалось, что сумма чисел над главной диагональю в три раза больше суммы чисел под этой диагональю. Найдите число, вписанное в центральную клетку таблицы.
|
|
Сложность: 3 Классы: 6,7,8
|
Маленькие детки кушали конфетки. Каждый съел на 7 конфет меньше, чем все остальные вместе, но все же больше одной конфеты.
Сколько всего конфет было съедено?
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 316]