Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 201]
|
|
Сложность: 4 Классы: 7,8,9,10
|
У Пети есть 8 монет, про которые он знает только, что 7 из них настоящие и весят одинаково, а одна фальшивая и отличается от настоящей по весу, неизвестно в какую сторону. У Васи есть чашечные весы – они показывают, какая чашка тяжелее, но не показывают, насколько. За каждое взвешивание Петя платит Васе (до взвешивания) одну монету из имеющихся у него. Если уплачена настоящая монета, Вася сообщит Пете верный результат взвешивания, а если фальшивая, то случайный. Петя хочет определить 5 настоящих монет и не отдать ни одну из этих монет Васе. Может ли Петя гарантированно этого добиться?
|
|
Сложность: 4 Классы: 10,11
|
Пусть $ABCD$ — параллелограмм, отличный от прямоугольника, а точка $P$ выбрана внутри него так, что описанные окружности треугольников $PAB$ и $PCD$ имеют общую хорду, перпендикулярную $AD$. Докажите, что радиусы данных окружностей равны.
|
|
Сложность: 4 Классы: 8,9,10
|
В кабинете сидят N нерях, у каждого на его столе скопилось ненулевое количество мусора. Неряхи выходят обедать по одному (после возвращения предыдущего), а в это время каждый из остальных перекладывает половину мусора со своего стола на стол вышедшего. Может ли случиться, что после того, как все пообедали, количество мусора на столах ни у кого не изменится, если а) N = 2; б) N = 10?
Две окружности радиуса 1 пересекаются в точках X, Y, расстояние между которыми также равно 1. Из точки C одной окружности проведены касательные CA, CB к другой. Прямая CB вторично пересекает первую окружность в точке A'. Найти расстояние AA'.
|
|
Сложность: 4 Классы: 8,9,10
|
Пусть H – ортоцентр треугольника ABC, X – произвольная точка. Окружность с диаметром XH вторично пересекает прямые AH, BH, CH в точках A1, B1,
C1, а прямые AX, BX, CX в точках A2,
B2, C2. Доказать, что прямые A1A2, B1B2, C1C2 пересекаются в одной точке.
Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 201]