Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 196]
|
|
Сложность: 4 Классы: 8,9,10
|
Пусть H – ортоцентр треугольника ABC, X – произвольная точка. Окружность с диаметром XH вторично пересекает прямые AH, BH, CH в точках A1, B1,
C1, а прямые AX, BX, CX в точках A2,
B2, C2. Доказать, что прямые A1A2, B1B2, C1C2 пересекаются в одной точке.
Дан вписанный четырёхугольник ABCD. Точки P и Q
симметричны точке C относительно прямых AB и AD
соответственно.
Докажите, что прямая PQ проходит через ортоцентр H треугольника ABD.
На сторонах
AB ,
BC и
AC треугольника
ABC взяты
точки
C' ,
A' и
B' соответственно. Докажите, что
площадь треугольника
A'B'C' равна
,
где
R – радиус описанной окружности треугольника
ABC .
|
|
Сложность: 4 Классы: 9,10,11
|
Четырёхугольник ABCD с попарно непараллельными сторонами описан около окружности с центром O. Докажите, что точка O совпадает с точкой пересечения средних линий четырёхугольника ABCD тогда и только тогда, когда OA·OC = OB·OD.
|
|
Сложность: 4 Классы: 10,11
|
Дан тетраэдр
ABCD. Вписанная в него сфера σ касается грани
ABC в точке
T. Сфера σ' касается грани
ABC в точке
T' и продолжений граней
ABD, BCD, CAD. Докажите, что прямые
AT и
AT' симметричны относительно биссектрисы угла
BAC.
Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 196]