ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Шифр кодового замка является двузначным числом. Буратино забыл код, но помнит, что сумма цифр этого числа, сложенная с их произведением, равна самому числу. Напишите все возможные варианты кода, чтобы Буратино смог быстрее открыть замок.
В клетчатом прямоугольнике m×n каждая клетка может быть либо живой, либо мёртвой. Каждую минуту одновременно все живые клетки умирают, а те мёртвые, у которых было нечётное число живых соседей (по стороне), оживают. Дано множество точек O, A1, A2, ..., An на плоскости. Расстояние между любыми двумя из этих точек является квадратным корнем из натурального числа. Докажите, что существуют
такие векторы x и y, что для любой точки Ai выполняется равенство На плоскости даны шесть точек. Известно, что их можно разбить на две тройки так, что получатся два треугольника. Всегда ли можно разбить эти точки на две тройки так, чтобы получились два треугольника, которые не имеют друг с другом никаких общих точек (ни внутри, ни на границе)? Дан параллелограмм ABCD. Две окружности с центрами в вершинах A и C проходят через D. Прямая l проходит через D и вторично пересекает окружности в точках X, Y. Докажите, что BX = BY. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 36]
Дан прямоугольный треугольник ABC. На катете AB во внешнюю сторону построен равносторонний треугольник ADB, а на гипотенузе AC во внутреннюю сторону – равносторонний треугольник AEC. Прямые DE и AB пересекаются в точке M. Весь чертёж стерли, оставив только точки A и B. Восстановите точку M.
Дан треугольник ABC площади 1. Из вершины B опущен перпендикуляр BM на биссектрису угла C. Найдите площадь треугольника AMC.
Внутри прямого угла с вершиной $O$ расположен треугольник $OAB$ с прямым углом $A$. Высота треугольника $OAB$, опущенная на гипотенузу, продолжена за точку $A$ до пересечения со стороной угла $O$ в точке $M$. Расстояния от точек $M$ и $B$ до второй стороны угла $O$ равны $2$ и $1$ соответственно. Найдите $OA$.
Дан параллелограмм ABCD. Две окружности с центрами в вершинах A и C проходят через D. Прямая l проходит через D и вторично пересекает окружности в точках X, Y. Докажите, что BX = BY.
Дана окружность радиуса R. Две другие окружности, сумма радиусов которых также равна R, касаются её изнутри.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 36]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке