ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Николай Борисович Васильев(1940-1998) - математик, многолетний руководитель "Задачника Кванта", ведущий методист Всесоюзной заочной математической школы, в 1958-1979 - активнейший член жюри Московской, Всероссийской и Всесоюзной олимпиад, один из организаторов Турнира городов, автор книг "Задачи всесоюзных математических олимпиад", "Заочные математические олимпиады", "Прямые и кривые", "Математические соревнования. Геометрия". |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике ABC ( AB < BC) точка I – центр вписанной окружности, M – середина стороны AC, N – середина дуги ABC описанной окружности. На шахматной доске выбрана клетка. Сумма квадратов расстояний от её центра до центров всех чёрных клеток обозначена через a, а до центров всех белых клеток – через b. Докажите, что a = b. Имеется много одинаковых прямоугольных картонок размером a×b см, где a и b – целые числа, причём a < b. Известно, что из таких картонок можно сложить и прямоугольник 49×51 см, и прямоугольник 99×101 см. Можно ли по этим данным однозначно определить a и b? В каждой клетке квадрата 8×8 клеток проведена одна из диагоналей. Рассмотрим объединение этих 64 диагоналей. Оно состоит из нескольких связных частей (к одной части относятся точки, между которыми можно пройти по одной или нескольким диагоналям). Может ли количество этих частей быть |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]
Докажите, что если произведение двух положительных чисел больше их суммы, то сумма больше 4.
Каких пятизначных чисел больше: не делящихся на 5 или тех, у которых ни первая, ни вторая цифра слева – не пятёрка?
При каких целых значениях n правильный треугольник со стороной n можно замостить плитками, имеющими форму равнобочной трапеции со сторонами 1, 1, 1, 2?
Докажите, что уравнение x² + y² – z² = 1997 имеет бесконечно много решений в целых числах.
В каждой клетке квадрата 8×8 клеток проведена одна из диагоналей. Рассмотрим объединение этих 64 диагоналей. Оно состоит из нескольких связных частей (к одной части относятся точки, между которыми можно пройти по одной или нескольким диагоналям). Может ли количество этих частей быть
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке