ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Блинков А.Д.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 49]      



Задача 115897

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Вписанные и описанные окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Вневписанные окружности ]
[ Гомотетия помогает решить задачу ]
[ Две пары подобных треугольников ]
Сложность: 3+
Классы: 8,9,10,11

Середина стороны треугольника и основание высоты, проведённой к этой стороне, симметричны относительно точки касания этой стороны с вписанной окружностью. Докажите, что эта сторона составляет треть периметра треугольника.

Прислать комментарий     Решение

Задача 66582

Темы:   [ Пятиугольники ]
[ Правильные многоугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9,10,11

В правильном пятиугольнике $ABCDE$ отмечена точка $F$ – середина $CD$. Серединный перпендикуляр к $AF$ пересекает $CE$ в точке $H$. Докажите, что прямая $AH$ перпендикулярна прямой $CE$.
Прислать комментарий     Решение


Задача 115384

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Геометрия на клетчатой бумаге ]
Сложность: 4-
Классы: 7,8,9

Легко разместить комплект кораблей для игры в "Морской бой" на доске 10× 10 (см. рис.). А на какой наименьшей квадратной доске можно разместить этот комплект? (Напомним, что согласно правилам корабли не должны соприкасаться даже углами.)


Прислать комментарий     Решение

Задача 64335

Темы:   [ Вписанные и описанные окружности ]
[ Углы между биссектрисами ]
Сложность: 4-
Классы: 8,9

Дан треугольник ABC. На продолжениях сторон AB и CB за точку B взяты соответственно точки C1 и A1 так, что  AC = A1C = AC1.
Докажите, что описанные окружности треугольников ABA1 и CBC1 пересекаются на биссектрисе угла B.

Прислать комментарий     Решение

Задача 64863

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Выпуклые тела ]
[ Примеры и контрпримеры. Конструкции ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 4-
Классы: 10,11

Верно ли, что существуют выпуклые многогранники с любым количеством диагоналей? (Диагональю называется отрезок, соединяющий две вершины многогранника и не лежащий на его поверхности.)

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .