ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В однокруговом хоккейном турнире принимало участие 2016 команд. По регламенту турнира за победу даётся 3 очка, за поражение 0 очков, а в случае ничьей назначается дополнительное время, победитель которого получает 2 очка, а проигравший – 1 очко. По окончании турнира Остапу Бендеру сообщили количество очков, набранных каждой командой, на основании чего он сделал вывод, что не менее N матчей закончились дополнительным временем. Найдите наибольшее возможное значение N. В прямоугольном треугольнике ABC из вершины прямого угла C опущена высота CH. В треугольники ACH и BCH вписали окружности; O1 и O2 – их центры; P1 и P2 – их точки касания с AC и BC. Докажите, что прямые O1P1 и O2P2 пересекаются на AB. |
Страница: 1 2 >> [Всего задач: 8]
В прямоугольном треугольнике ABC из вершины прямого угла C опущена высота CH. В треугольники ACH и BCH вписали окружности; O1 и O2 – их центры; P1 и P2 – их точки касания с AC и BC. Докажите, что прямые O1P1 и O2P2 пересекаются на AB.
Пусть $X$ — некоторая фиксированная точка на стороне $AC$ треугольника $ABC$ ($X$ отлична от $A$ и $C$). Произвольная окружность, проходящая через $X$ и $B$, пересекает отрезок $AC$ и описанную окружность треугольника $ABC$ в точках $P$ и $Q$, отличных от $X$ и $B$. Докажите, что все возможные прямые $PQ$ проходят через одну точку.
У Васи есть пластмассовый угольник (без делений) с углами 30°, 60° и 90. Ему нужно построить угол в 15°. Как это сделать, не используя других инструментов?
Прямая l перпендикулярна одной из медиан треугольника. Серединные перпендикуляры к сторонам этого треугольника пересекают прямую l в трёх точках. Докажите, что одна из них является серединой отрезка, образованного двумя оставшимися.
В треугольнике $ABC$ провели биссектрису $CL$. Серединный перпендикуляр к стороне $AC$ пересекает отрезок $CL$ в точке $K$.
Страница: 1 2 >> [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке