ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дано натуральное число n > 3. Назовём набор из n точек на координатной плоскости допустимым, если их абсциссы различны, и каждая из этих точек окрашена либо в красный, либо в синий цвет. Будем говорить, что многочлен P(x) разделяет допустимый набор точек, если либо выше графика P(x) нет красных точек, а ниже – нет синих, либо наоборот (на самом графике могут лежать точки обоих цветов). При каком наименьшем k любой допустимый набор из n точек можно разделить многочленом степени не более k? Существует ли число, в десятичной записи квадрата которого имеется последовательность цифр «2018»? Около сферы радиуса 10 описан некоторый 19-гранник. Доказать, что на его поверхности найдутся две точки, расстояние между которыми больше 21. а) Сумма длин рёбер любого выпуклого многогранника больше утроенного диаметра. Докажите это. (Диаметром многогранника называют наибольшую из длин всевозможных отрезков с концами в вершинах многогранника.) б) Для любых двух в) Если в выпуклом многограннике разрезать два ребра, то для любых двух его г) Докажите, что в Дан треугольник ABC и прямая l, пересекающая BC, CA и AB в точках A1, B1 и C1 соответственно. Точка A' – середина отрезка, соединяющего проекции A1 на AB и AC. Аналогично определяются точки B' и C'. Действительные числа a, b, c, d, по модулю большие единицы,
удовлетворяют соотношению abc + abd + acd + bcd + a + b + c + d = 0. Имеется натуральное число n > 1970. Возьмём остатки от деления числа 2n на 2, 3, 4, ..., n. Доказать, что сумма этих остатков больше 2n. |
Страница: 1 [Всего задач: 4]
На плоскости расположено 20 точек, никакие три из которых не лежат на одной
прямой, из них 10 синих и 10 красных.
Имеется натуральное число n > 1970. Возьмём остатки от деления числа 2n на 2, 3, 4, ..., n. Доказать, что сумма этих остатков больше 2n.
Около сферы радиуса 10 описан некоторый 19-гранник. Доказать, что на его поверхности найдутся две точки, расстояние между которыми больше 21.
а) Сумма длин рёбер любого выпуклого многогранника больше утроенного диаметра. Докажите это. (Диаметром многогранника называют наибольшую из длин всевозможных отрезков с концами в вершинах многогранника.) б) Для любых двух в) Если в выпуклом многограннике разрезать два ребра, то для любых двух его г) Докажите, что в
Страница: 1 [Всего задач: 4]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке