ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В стране 1988 городов и 4000 дорог. Имеются чашечные весы без гирь и 3 одинаковые по внешнему виду монеты, одна из которых фальшивая: она легче настоящих (настоящие монеты одного веса). Сколько надо взвешиваний, чтобы определить фальшивую монету? Решите ту же задачу в случаях, когда имеется 4 монеты и 9 монет. Боковые стороны AB и CD трапеции ABCD являются соответственно хордами окружностей ω1 и ω2, касающихся друг друга внешним образом. Градусные меры касающихся дуг AB и CD равны α и β. Окружности ω3 и ω4 также имеют хорды AB и CD соответственно. Их дуги AB и CD, расположенные с той же стороны от хорд, что соответствующие дуги первых двух окружностей, имеют градусные меры β и α. Докажите, что ω3 и ω4 тоже касаются. Точки A и B лежат в плоскости α , M – такая точка в пространстве, для которой AM = 2 , BM = 5 и ортогональная проекция на плоскость α отрезка BM в три раза больше ортогональной проекции на эту плоскость отрезка AM . Найдите расстояние от точки M до плоскости α . На рисунке изображен график функции y = x² + ax + b. Известно, что прямая AB перпендикулярна прямой y = x. На кольцевой дороге через равные промежутки расположены 25 постов, на каждом стоит полицейский. Полицейские пронумерованы в каком-то порядке числами от 1 до 25. Требуется, чтобы они перешли по дороге так, чтобы снова на каждом посту был полицейский, но по часовой стрелке за номером 1 стоял номер 2, за номером 2 стоял номер 3, ..., за номером 25 стоял номер 1. Докажите, что если организовать переход так, чтобы суммарное пройденное расстояние было наименьшим, то кто-то из полицейских останется на своём посту. Целые числа a, b и c таковы, что числа a/b + b/c + c/a и a/с + с/b + b/a тоже целые. Докажите, что |a| = |b| = |c|. |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 51]
На клетчатой доске 10×10 в одной из клеток сидит бактерия. За один ход бактерия сдвигается в соседнюю по стороне клетку и делится на две бактерии (обе остаются в той же клетке). Затем снова одна из сидящих на доске бактерий сдвигается в соседнюю по стороне клетку и делится на две, и так далее. Может ли после нескольких таких ходов во всех клетках оказаться поровну бактерий?
а) Существуют ли такие натуральные числа a, b, c, что из двух чисел a/b + b/c + c/a и b/a + c/b + a/c ровно одно – целое? б) Докажите, что если они оба целые, то a = b = c.
Целые числа a, b и c таковы, что числа a/b + b/c + c/a и a/с + с/b + b/a тоже целые. Докажите, что |a| = |b| = |c|.
Даны N синих и N красных палочек, причём сумма длин синих палочек равна сумме длин красных. Известно, что из синих палочек можно сложить N-угольник, и из красных – тоже. Всегда ли можно выбрать одну синюю и одну красную палочки и перекрасить их (синюю – в красный цвет, а красную – в синий) так, что снова из синих палочек можно будет сложить N-угольник, и из красных – тоже? Решите задачу
На плоскости лежит игла. Разрешается поворачивать иглу на 45° вокруг любого из её концов.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 51]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке