ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Знаменатели двух несократимых дробей равны 600 и 700. Найдите наименьшее возможное значение знаменателя их суммы (в несократимой записи). Все целые числа от -33 до 100 включительно расставили в некотором порядке и рассмотрели суммы каждых двух соседних чисел. Оказалось, что среди них нет нулей. Тогда для каждой такой суммы нашли число, ей обратное. Полученные числа сложили. Могло ли в результате получится целое число? Углы треугольника α, β, γ удовлетворяют неравенствам sin α > cos β, sin β > cos γ, sin γ > cos α . Докажите, что треугольник остроугольный. Фокусник Арутюн и его помощник Амаяк собираются показать следующий фокус. На доске нарисована окружность. Зрители отмечают на ней 2007 различных точек, затем помощник фокусника стирает одну из них. После этого фокусник впервые входит в комнату, смотрит на рисунок и отмечает полуокружность, на которой лежала стертая точка. Как фокуснику договориться с помощником, чтобы фокус гарантированно удался? В треугольнике ABC на стороне AB выбраны точки K и L так, что AK = BL, а на стороне BC — точки M и N так, что CN = BM. Докажите, что KN + LM ≥ AC.
Найдите все пары чисел x,y Рассматриваются 2000 чисел: 11, 101, 1001, ... . Докажите, что среди этих чисел не менее 99% составных. Стороны AB, BC, CD и DA четырёхугольника ABCD равны соответственно сторонам A'B', B'C', C'D' и D'A' четырёхугольника A'B'C'D', причём известно, что AB || CD и B'C' || D'A'. Докажите, что оба четырёхугольника – параллелограммы. На сторонах AB и BC равностороннего треугольника ABC взяты точки D и K, а на стороне AC – точки E и M, причём DA + AE = KC + CM = AB. Имеется 200 гирек массами 1, 2, ..., 200 грамм. Их разложили на две чаши весов по 100 гирек на каждую, и весы оказались в равновесии. На каждой гирьке записали, сколько гирек на противоположной чаше легче неё. Докажите, что сумма чисел, записанных на гирьках левой чаши, равна сумме чисел, записанных на гирьках правой чаши. Дана клетчатая полоска из 2n клеток, пронумерованных слева направо следующим образом: 1, 2, 3, ..., n, –n, ..., –2, –1 По этой полоске перемещают фишку, каждым ходом сдвигая её на то число клеток, которое указано в текущей клетке (вправо, если число положительно, и влево, если отрицательно). Известно, что фишка, начав с любой клетки, обойдёт все клетки полоски. Докажите, что число 2n + 1 простое. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 51]
На витрине ювелирного магазина лежат 15 бриллиантов. Рядом с ними стоят таблички с указанием масс, на которых написано 1, 2, ..., 15 карат. У продавца есть чашечные весы и четыре гирьки массами 1, 2, 4 и 8 карат. Покупателю разрешается только один тип взвешиваний: положить один из бриллиантов на одну чашу весов, а гирьки — на другую и убедиться, что масса на соответствующей табличке указана верно. Однако за каждую взятую гирьку нужно заплатить продавцу 100 монет. Если гирька снимается с весов и в следующем взвешивании не участвует, продавец забирает её. Какую наименьшую сумму придётся заплатить, чтобы проверить массы всех бриллиантов?
Можно ли в каждую клетку таблицы 40×41 записать по целому числу так, чтобы число в каждой клетке равнялось количеству тех соседних с ней по стороне клеток, в которых написано такое же число?
Натуральное число умножили на 5, результат снова умножили на 5 и так далее, всего сделали $k$ умножений. Оказалось, что в десятичной записи исходного числа и полученных $k$ чисел нет
На Поле Чудес выросло 8 золотых монет, но стало известно, что ровно три из них фальшивые. Все настоящие монеты весят одинаково, все фальшивые тоже, но они легче настоящих. Лиса Алиса и Буратино собрали монеты и стали их делить. Алиса собирается отдать Буратино три монеты, но он хочет сначала проверить, все ли они настоящие. Сможет ли он сделать это за два взвешивания на чашечных весах без гирь?
Дана клетчатая полоска из 2n клеток, пронумерованных слева направо следующим образом: 1, 2, 3, ..., n, –n, ..., –2, –1 По этой полоске перемещают фишку, каждым ходом сдвигая её на то число клеток, которое указано в текущей клетке (вправо, если число положительно, и влево, если отрицательно). Известно, что фишка, начав с любой клетки, обойдёт все клетки полоски. Докажите, что число 2n + 1 простое.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 51]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке