Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Канель-Белов А.Я.

Алексей Яковлевич Канель-Белов (род. 1963) - известный российский математик, педагог и составитель олимпиадных задач. Доктор физико-математических наук, профессор МИОО и Бар-Иланского университета.

Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Основанием пирамиды SABCD является трапеция ABCD с основаниями BC и AD , причём BC:AD = 2:5 . Диагонали трапеции пересекаются в точке E , а центр O вписанной в пирамиду сферы лежит на отрезке SE и делит его в отношении SO:OE = 7:2 . Найдите площадь полной поверхности пирамиды, если площадь боковой грани SBC равна 8.

Вниз   Решение


Даны две окружности, касающиеся друг друга внутренним образом в точке A); из точки B большей окружности, диаметрально противоположной точке A, проведена касательная BC к меньшей окружности. Прямые BC и AC пересекает большую окружность в точках D и E соответственно. Докажите, что дуги DE и BE равны.

ВверхВниз   Решение


В саду растут яблони и груши — всего 7 деревьев (деревья обоих видов присутствуют). Ближе всех к каждому дереву растет дерево того же вида и дальше всех от каждого дерева растет дерево того же вида. Приведите пример того, как могут располагаться деревья в саду.
Комментарий. Имелось в виду, что если ближайших к данному дереву (или самых дальних от данного дерева) несколько, то условие должно выполнятся для каждого из них.

ВверхВниз   Решение


Бабе-Яге подарили большие песочные часы на 5 минут и маленькие – на 2 минуты. Зелье должно непрерывно кипеть ровно 8 минут. Когда оно закипело, весь песок в больших часах находился в нижней половине, а в маленьких – какая-то (неизвестная) часть песка в верхней, а остальная часть – в нижней половине. Помогите Бабе-Яге отмерить ровно 8 минут.
(Песок все время сыплется с постоянной скоростью. На переворачивание время не тратится.)

ВверхВниз   Решение


В треугольнике ABC на сторонах AC и BC взяты такие точки X и Y, что  ∠ABX = ∠YAC,  ∠AYB = ∠BXCXC = YB.  Найдите углы треугольника ABC.

ВверхВниз   Решение


Найдите числа, равные удвоенной сумме своих цифр.

ВверхВниз   Решение


Разрежьте по клеточкам квадрат 7×7 на девять прямоугольников (не обязательно различных), из которых можно будет сложить любой прямоугольник со сторонами, не превосходящими 7.

ВверхВниз   Решение


Можно ли найти восемь таких натуральных чисел, что ни одно из них не делится ни на какое другое, но квадрат любого из этих чисел делится на каждое из остальных?

Вверх   Решение

Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 101]      



Задача 98370

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Шахматная раскраска ]
[ Перебор случаев ]
Сложность: 3+
Классы: 7,8,9

На клетчатой доске 5×5 расставили максимальное число шахматных коней так, чтобы они не били друг друга.
Докажите, что такая расстановка единственна.

 
Прислать комментарий     Решение

Задача 98400

Темы:   [ Формула включения-исключения ]
[ Куб ]
[ Подсчет двумя способами ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3+
Классы: 8,9,10

Куб со стороной 20 разбит на 8000 единичных кубиков, и в каждом кубике записано число. Известно, что в каждом столбике из 20 кубиков, параллельном ребру куба, сумма чисел равна 1 (рассматриваются столбики всех трёх направлений). В некотором кубике записано число 10. Через этот кубик проходит три слоя 1×20×20, параллельных граням куба. Найдите сумму всех чисел вне этих слоёв.

Прислать комментарий     Решение

Задача 98431

Тема:   [ Симметричная стратегия ]
Сложность: 3+
Классы: 7,8,9

Игра происходит на квадрате клетчатой бумаги 9×9. Играют двое, ходят по очереди. Начинающий игру ставит в свободные клетки крестики, его партнер – нолики. Когда все клетки заполнены, подсчитывается количество К строк и столбцов, в которых крестиков больше, чем ноликов,и количество Н строк и столбцов, в которых ноликов больше, чем крестиков. Разность  В = К – Н  считается выигрышем игрока, который начинает. Найдите такое значение B, что
  1) первый игрок может обеспечить себе выигрыш не меньше B, как бы ни играл второй игрок;
  2) второй игрок всегда может добиться того, что первый получит выигрыш не больше B, как бы тот ни играл.

Прислать комментарий     Решение

Задача 98540

Темы:   [ Разные задачи на разрезания ]
[ Выпуклые многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

На квадратном торте расположены треугольные шоколадки, которые не соприкасаются между собой. Всегда ли можно разрезать торт на выпуклые многоугольники так, чтобы каждый многоугольник содержал ровно одну шоколадку? (Торт считайте плоским квадратом.)

Прислать комментарий     Решение

Задача 107846

Темы:   [ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 7,8,9

Можно ли найти восемь таких натуральных чисел, что ни одно из них не делится ни на какое другое, но квадрат любого из этих чисел делится на каждое из остальных?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 101]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .