Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 101]
Назовём сочетанием цифр несколько цифр, записанных подряд. В стране Роботландии некоторые сочетания цифр объявлены запрещёнными. Известно, что запрещённых сочетаний конечное число и существует бесконечная десятичная дробь, не содержащая запрещённых сочетаний. Докажите, что существует бесконечная периодическая десятичная дробь, не содержащая запрещённых сочетаний.
Точка
I – центр вписанной окружности треугольника
ABC. Внутри треугольника выбрана точка
P такая, что
ÐPBA + ÐPCA = ÐPBC + ÐPCB.
Докажите, что
AP ≥
AI, причём равенство выполняется тогда и только тогда, когда
P совпадает с
I.
|
|
Сложность: 4 Классы: 10,11
|
Внутри окружности с центром O отмечены точки A и B так, что OA = OB.
Постройте на окружности точку M, для которой сумма расстояний до точек A и B наименьшая среди всех возможных.
|
|
Сложность: 4+ Классы: 9,10,11
|
Существуют ли такие два многочлена с целыми коэффициентами, что у каждого из них есть коэффициент, модуль которого больше 2015, но у произведения этих двух
многочленов модули всех коэффициентов не превосходят 1?
|
|
Сложность: 4+ Классы: 10,11
|
На доске можно либо написать две единицы, либо стереть любые два уже написанных одинаковых числа n и написать вместо них числа n + 1 и n – 1. Какое минимальное количество таких операций требуется, чтобы получить число 2005? (Сначала доска была чистой.)
Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 101]