ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Канель-Белов А.Я.

Алексей Яковлевич Канель-Белов (род. 1963) - известный российский математик, педагог и составитель олимпиадных задач. Доктор физико-математических наук, профессор МИОО и Бар-Иланского университета.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 101]      



Задача 110751

Темы:   [ Выпуклые многоугольники ]
[ Выпуклый анализ и линейное программирование ]
[ Неравенства с площадями ]
[ Индукция в геометрии ]
[ Перенос помогает решить задачу ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 5+
Классы: 10,11

Каждой стороне b выпуклого многоугольника P поставлена в соответствие наибольшая из площадей треугольников, содержащихся в P, одна из сторон которых совпадает с b. Докажите, что сумма площадей, соответствующих всем сторонам P, не меньше удвоенной площади многоугольника P.
Прислать комментарий     Решение


Задача 111044

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
[ Разложение на множители ]
[ Малая теорема Ферма ]
Сложность: 5+
Классы: 9,10,11

Пусть p – простое число. Докажите, что при некотором простом q все числа вида  np – p  не делятся на q.

Прислать комментарий     Решение

Задача 110748

Темы:   [ Выпуклый анализ и линейное программирование ]
[ Неравенства с модулями ]
Сложность: 6-
Классы: 10,11

Даны числа а1, ..., аn.
Для 1 ≤ in положим

di = MAX { aj | 1 ≤ ji } - MIN { aj | ijn }
d = MAX { di | 1 ≤ in }

а) Доказать, что для любых x1x2 ≤ ... ≤ xn выполняется неравенство

MAX { |xi - ai| | 1 ≤ in } ≥ d/2.


б) Доказать, что равенство в (*) выполняется для некоторых {xi} i=1...n

Прислать комментарий     Решение

Задача 110749

Темы:   [ Прямая Симсона ]
[ Гомотетия помогает решить задачу ]
[ Четыре точки, лежащие на одной окружности ]
[ Признаки и свойства параллелограмма ]
Сложность: 6-
Классы: 9,10,11

Рассмотрим 5 точек A, B, C, D, E так что ABCD - параллелограмм, BCED лежат на одной окружности. Al, прямая lпересекает внутренность [DC] в F и прямую BC в G. Пусть EF = EG = EC. Доказать, что l - биссектриса угла DAB.

Прислать комментарий     Решение


Задача 109667

Темы:   [ Геометрия на клетчатой бумаге ]
[ Числовые таблицы и их свойства ]
[ Исследование квадратного трехчлена ]
[ Подсчет двумя способами ]
[ Целочисленные и целозначные многочлены ]
[ Непрерывность и компактность ]
Сложность: 6
Классы: 10,11

Клетчатая фигура Ф обладает таким свойством: при любом заполнении клеток прямоугольника m×n числами, сумма которых положительна, фигуру Ф можно так расположить в прямоугольнике, чтобы сумма чисел в клетках прямоугольника, накрытых фигурой Ф, была положительна (фигуру Ф можно поворачивать). Докажите, что данный прямоугольник может быть покрыт фигурой Ф в несколько слоев.

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 101]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .