Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Джукич Д.

Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Автор: Лифшиц Ю.

Опишите все способы покрасить каждое натуральное число в один из трёх цветов так, чтобы выполнялось условие: если числа a, b и c (не обязательно различные) удовлетворяют условию  2000(a + b) = c,  то они либо все одного цвета, либо трёх разных цветов.

Вниз   Решение


Точечный прожектор, находящийся в вершине B равностороннего треугольника ABC, освещает угол α. Найдите все такие значения α, не превосходящие 60°, что при любом положении прожектора, когда освещенный угол целиком находится внутри угла ABC, из освещенного и двух неосвещенных отрезков стороны AC можно составить треугольник.

ВверхВниз   Решение


Какое наибольшее число фишек можно поставить на клетки шахматной доски так, чтобы на каждой горизонтали, вертикали и диагонали (не только на главных) находилось чётное число фишек?

ВверхВниз   Решение


Автор: Митькин Д.

Длины сторон треугольника – простые числа. Докажите, что его площадь не может быть целым числом.

ВверхВниз   Решение


Найдите все такие пары квадратных трёхчленов  x² + ax + bx² + cx + d,  что a и b – корни второго трёхчлена, c и d – корни первого.

ВверхВниз   Решение


Докажите, что для любых положительных чисел x и y справедливо неравенство  

ВверхВниз   Решение


Автор: Лифшиц Ю.

Клетки квадрата 9×9 окрашены в красный и белый цвета. Докажите, что найдётся или клетка, у которой ровно два красных соседа по углу, или клетка, у которой ровно два белых соседа по углу (или и то, и другое).

ВверхВниз   Решение


Про три положительных числа известно, что если выбрать одно из них и прибавить к нему сумму квадратов двух других, то получится одна и та же сумма, независимо от выбранного числа. Верно ли, что все числа равны?

ВверхВниз   Решение


Автор: Джукич Д.

Найдите все такие натуральные числа n, что для любых двух его взаимно простых делителей a и b число  a + b – 1  также является делителем n.

ВверхВниз   Решение


Найдите все такие числа a, что для любого натурального n число  an(n + 2)(n + 4)  будет целым.

ВверхВниз   Решение


Автор: Калинин А.

Две окружности S1 и S2 касаются внешним образом в точке F. Их общая касательная касается S1 и S2 в точках A и B соответственно. Прямая, параллельная AB, касается окружности S2 в точке C и пересекает окружность S1 в точках D и E. Докажите, что общая хорда описанных окружностей треугольников ABC и BDE, проходит через точку F.

ВверхВниз   Решение


Квадрат n×n ( n 3 ) склеен в цилиндр. Часть клеток покрашена в черный цвет. Докажите, что найдутся две параллельных линии (две горизонтали, две вертикали или две диагонали), содержащие одинаковое количество черных клеток.

ВверхВниз   Решение


Найдите x1000, если  x1 = 4,  x2 = 6,  и при любом натуральном  n ≥ 3  xn – наименьшее составное число, большее   2xn–1xn–2.

ВверхВниз   Решение


Автор: Садыков Р.

На координатной плоскости расположены четыре фишки, центры которых имеют целочисленные координаты. Разрешается сдвинуть любую фишку на вектор, соединяющий центры любых двух из остальных фишек. Докажите, что несколькими такими перемещениями можно совместить любые две наперед заданные фишки.

ВверхВниз   Решение


Докажите, что можно разбить все множество натуральных чисел на 100 непустых подмножеств так, чтобы в любой тройке a, b, c, для которой  a + 99b = c,  нашлись два числа из одного подмножества.

Вверх   Решение

Все задачи автора

Страница: 1 [Всего задач: 4]      



Задача 109708

Темы:   [ Деление с остатком ]
[ Примеры и контрпримеры. Конструкции ]
[ Уравнения в целых числах ]
Сложность: 4-
Классы: 7,8,9

Докажите, что можно разбить все множество натуральных чисел на 100 непустых подмножеств так, чтобы в любой тройке a, b, c, для которой  a + 99b = c,  нашлись два числа из одного подмножества.

Прислать комментарий     Решение

Задача 110079

Темы:   [ Против большей стороны лежит больший угол ]
[ Пятиугольники ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 7,8,9

Автор: Джукич Д.

Все стороны выпуклого пятиугольника равны, а все углы различны. Докажите, что максимальный и минимальный углы прилегают к одной стороне пятиугольника.
Прислать комментарий     Решение


Задача 109752

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ НОД и НОК. Взаимная простота ]
[ Принцип крайнего (прочее) ]
Сложность: 5-
Классы: 8,9,10

Автор: Джукич Д.

Найдите все такие нечётные натуральные  n > 1,  что для любых взаимно простых делителей a и b числа n число  a + b – 1  также является делителем n.

Прислать комментарий     Решение

Задача 109744

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ НОД и НОК. Взаимная простота ]
[ Принцип крайнего (прочее) ]
Сложность: 5
Классы: 8,9,10

Автор: Джукич Д.

Найдите все такие натуральные числа n, что для любых двух его взаимно простых делителей a и b число  a + b – 1  также является делителем n.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .