ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Кресла для зрителей вдоль лыжной трассы занумерованы по порядку: 1, 2, 3, ..., 1000. Кассирша продала n билетов на все первые 100 мест, но n больше 100, так как на некоторые места она продала больше одного билета (при этом n < 1000). Зрители входят на трассу по одному.Каждый, подойдя к своему месту, занимает его, если оно свободно, если же занято, говорит "Ох!", идёт в сторону роста номеров до первого свободного места и занимает его. Каждый раз, обнаружив очередное место занятым, он говорит "Ох!". Докажите, что число "охов" не зависит от того, в каком порядке зрители выходят на трассу. а) В треугольник ABC вписаны треугольники A1B1C1 и A2B2C2 так, что C1A1 ⊥ BC, A1B1 ⊥ CA, B1C1 ⊥ AB, B2A2 ⊥ BC, C2B2 ⊥ CA, б) Внутри треугольника ABC взяли точки A1, B1, C1, A2, B2, C2 так, что A1 - на отрезке AB1, B1 - на отрезке BC1, C1 – на отрезке CA1, A2 – на отрезке AC2, B2 – на отрезке BA2, C2 – на отрезке CB2 и углы BAA1, CBB1, ACC1, CAA2, ABB2, BCC2 равны. Докажите, что треугольники A1B1C1 и A2B2C2 равны. Последовательность (an) задана условиями a1= 1000000 , an+1=n[ a, b, c – целые числа, причём a + b + c делится на 6. Докажите, что a³ + b³ + c³ тоже делится на 6. Целые неотрицательные числа x и y удовлетворяют равенству x² – mxy + y² = 1 (1) тогда и только тогда, когда x и y – соседние члены последовательности (2): a0 = 0, a1 = 1, a2 = m, a3 = m² – 1, a4 = m³ – 2m, a5 = m4 – 3m² + 1, ..., в которой ak+1 = mak – ak–1 для любого k 0. Докажите это. К плоскости приклеены два непересекающихся не обязательно одинаковых деревянных круга – серый и чёрный. Дан бесконечный деревянный угол, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи угла, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершине). Докажите, что внутри угла можно нарисовать луч, выходящий из вершины, так, чтобы при всевозможных положениях угла этот луч проходил через одну и ту же точку плоскости. Найдите суммы Доказать, что последовательность xn = sin(n2) не стремится к нулю при n, стремящемся к бесконечности. Докажите, что высота прямоугольного треугольника, опущенная на гипотенузу, равна произведению катетов, делённому на гипотенузу. Вдоль лыжной трассы расставлено в ряд бесконечное число кресел, занумерованных по порядку: 1, 2, 3, ... Кассирша продала билеты на первые m мест, но на некоторые места она продала не один билет, и общее число проданных билетов n > m. Зрители входят на трассу по одному. Каждый, подходя к месту, указанному на его билете, занимает его, если оно свободно, а если оно занято, говорит "Ох!" и идёт к следующему по номеру месту. Если оно свободно, то занимает его, если же занято, снова говорит "Ох!" и двигается дальше – до первого свободного места. Докажите, что общее количество "охов" не зависит от того, в каком порядке зрители выходят на трассу. |
Страница: << 1 2 3 4 >> [Всего задач: 16]
Кресла для зрителей вдоль лыжной трассы занумерованы по порядку: 1, 2, 3, ..., 1000. Кассирша продала n билетов на все первые 100 мест, но n больше 100, так как на некоторые места она продала больше одного билета (при этом n < 1000). Зрители входят на трассу по одному.Каждый, подойдя к своему месту, занимает его, если оно свободно, если же занято, говорит "Ох!", идёт в сторону роста номеров до первого свободного места и занимает его. Каждый раз, обнаружив очередное место занятым, он говорит "Ох!". Докажите, что число "охов" не зависит от того, в каком порядке зрители выходят на трассу.
Вдоль лыжной трассы расставлено в ряд бесконечное число кресел, занумерованных по порядку: 1, 2, 3, ... Кассирша продала билеты на первые m мест, но на некоторые места она продала не один билет, и общее число проданных билетов n > m. Зрители входят на трассу по одному. Каждый, подходя к месту, указанному на его билете, занимает его, если оно свободно, а если оно занято, говорит "Ох!" и идёт к следующему по номеру месту. Если оно свободно, то занимает его, если же занято, снова говорит "Ох!" и двигается дальше – до первого свободного места. Докажите, что общее количество "охов" не зависит от того, в каком порядке зрители выходят на трассу.
а) В классе была дана контрольная. Известно, что по крайней мере ⅔ задач этой контрольной оказались трудными: каждую такую задачу не решили по крайней мере ⅔ школьников. Известно также, что по крайней мере ⅔ школьников класса написали контрольную хорошо: каждый такой школьник решил по крайней мере ⅔ задач контрольной. Могло ли такое быть? Изменится ли ответ, если везде в условии заменить ⅔ на б) ¾; в) 7/10?
По прямому шоссе со скоростью 60 км в час едет машина. Недалеко от шоссе стоит параллельный ему 100-метровый забор. Каждую секунду пассажир машины измеряет угол, под которым виден забор. Докажите, что сумма всех измеренных им углов меньше 1100°.
Есть бесконечная в одну сторону клетчатая полоска, клетки которой пронумерованы натуральными числами, и мешок с десятью камнями. В клетках полоски камней изначально нет. Можно делать следующее: – перемещать камень из мешка в первую клетку полоски или обратно; – если в клетке с номером $i$ лежит камень, то можно переложить камень из мешка в клетку с номером $i + 1$ или обратно. Можно ли, действуя по этим правилам, положить камень в клетку с номером 1000?
Страница: << 1 2 3 4 >> [Всего задач: 16]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке