Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шень А.Х.

Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Автор: Шень А.Х.

Кресла для зрителей вдоль лыжной трассы занумерованы по порядку: 1, 2, 3, ..., 1000. Кассирша продала n билетов на все первые 100 мест, но n больше 100, так как на некоторые места она продала больше одного билета (при этом  n < 1000).  Зрители входят на трассу по одному.Каждый, подойдя к своему месту, занимает его, если оно свободно, если же занято, говорит "Ох!", идёт в сторону роста номеров до первого свободного места и занимает его. Каждый раз, обнаружив очередное место занятым, он говорит "Ох!". Докажите, что число "охов" не зависит от того, в каком порядке зрители выходят на трассу.

Вниз   Решение


а) В треугольник ABC вписаны треугольники A1B1C1 и A2B2C2 так, что  C1A1BCA1B1CAB1C1ABB2A2BCC2B2CA,
A2C2AB.  Докажите, что эти треугольники равны.

б) Внутри треугольника ABC взяли точки A1, B1, C1, A2, B2, C2 так, что A1 - на отрезке AB1, B1 - на отрезке BC1, C1 – на отрезке CA1, A2 – на отрезке AC2, B2 – на отрезке BA2, C2 – на отрезке CB2 и углы BAA1, CBB1, ACC1, CAA2, ABB2, BCC2 равны. Докажите, что треугольники A1B1C1 и A2B2C2 равны.

ВверхВниз   Решение


Последовательность (an) задана условиями a1= 1000000 , an+1=n[]+n . Докажите, что в ней можно выделить бесконечную подпоследовательность, являющуюся арифметической прогрессией.

ВверхВниз   Решение


a, b, c – целые числа, причём  a + b + c  делится на 6. Докажите, что  a³ + b³ + c³  тоже делится на 6.

ВверхВниз   Решение


Целые неотрицательные числа x и y удовлетворяют равенству   x² – mxy + y² = 1   (1)   тогда и только тогда, когда x и y – соседние члены последовательности  (2):  a0 = 0,  a1 = 1,  a2 = ma3 = m² – 1,  a4 = m³ – 2ma5 = m4 – 3m² + 1,  ...,  в которой  ak+1 = mak – ak–1  для любого  k 0.  Докажите это.

ВверхВниз   Решение


К плоскости приклеены два непересекающихся не обязательно одинаковых деревянных круга – серый и чёрный. Дан бесконечный деревянный угол, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи угла, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершине). Докажите, что внутри угла можно нарисовать луч, выходящий из вершины, так, чтобы при всевозможных положениях угла этот луч проходил через одну и ту же точку плоскости.

ВверхВниз   Решение


Найдите суммы
  а)   1·n + 2(n – 1) + 3(n – 2) + ... + n·1.
  б)   Sn,k = (1·2·...·k)·(n(n – 1)...(nk + 1)) + (2·3·...·(k + 1))·((n – 1)(n – 2)...(nk)) + ... + ((nk + 1)(nk + 2)...·n)·(k(k – 1)·...·1).

ВверхВниз   Решение


Доказать, что последовательность xn = sin(n2) не стремится к нулю при n, стремящемся к бесконечности.

ВверхВниз   Решение


Докажите, что высота прямоугольного треугольника, опущенная на гипотенузу, равна произведению катетов, делённому на гипотенузу.

ВверхВниз   Решение


Автор: Шень А.Х.

Вдоль лыжной трассы расставлено в ряд бесконечное число кресел, занумерованных по порядку: 1, 2, 3, ... Кассирша продала билеты на первые m мест, но на некоторые места она продала не один билет, и общее число проданных билетов  n > m.  Зрители входят на трассу по одному. Каждый, подходя к месту, указанному на его билете, занимает его, если оно свободно, а если оно занято, говорит "Ох!" и идёт к следующему по номеру месту. Если оно свободно, то занимает его, если же занято, снова говорит "Ох!" и двигается дальше – до первого свободного места. Докажите, что общее количество "охов" не зависит от того, в каком порядке зрители выходят на трассу.

Вверх   Решение

Все задачи автора

Страница: << 1 2 3 4 >> [Всего задач: 16]      



Задача 98288

Темы:   [ Подсчет двумя способами ]
[ Процессы и операции ]
Сложность: 4-
Классы: 7,8,9

Автор: Шень А.Х.

Кресла для зрителей вдоль лыжной трассы занумерованы по порядку: 1, 2, 3, ..., 1000. Кассирша продала n билетов на все первые 100 мест, но n больше 100, так как на некоторые места она продала больше одного билета (при этом  n < 1000).  Зрители входят на трассу по одному.Каждый, подойдя к своему месту, занимает его, если оно свободно, если же занято, говорит "Ох!", идёт в сторону роста номеров до первого свободного места и занимает его. Каждый раз, обнаружив очередное место занятым, он говорит "Ох!". Докажите, что число "охов" не зависит от того, в каком порядке зрители выходят на трассу.

Прислать комментарий     Решение

Задача 98300

Темы:   [ Процессы и операции ]
[ Подсчет двумя способами ]
Сложность: 4-
Классы: 7,8,9

Автор: Шень А.Х.

Вдоль лыжной трассы расставлено в ряд бесконечное число кресел, занумерованных по порядку: 1, 2, 3, ... Кассирша продала билеты на первые m мест, но на некоторые места она продала не один билет, и общее число проданных билетов  n > m.  Зрители входят на трассу по одному. Каждый, подходя к месту, указанному на его билете, занимает его, если оно свободно, а если оно занято, говорит "Ох!" и идёт к следующему по номеру месту. Если оно свободно, то занимает его, если же занято, снова говорит "Ох!" и двигается дальше – до первого свободного места. Докажите, что общее количество "охов" не зависит от того, в каком порядке зрители выходят на трассу.

Прислать комментарий     Решение

Задача 98582

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Таблицы и турниры (прочее) ]
[ Принцип Дирихле (площадь и объем) ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Шень А.Х.

а) В классе была дана контрольная. Известно, что по крайней мере ⅔ задач этой контрольной оказались трудными: каждую такую задачу не решили по крайней мере ⅔ школьников. Известно также, что по крайней мере ⅔ школьников класса написали контрольную хорошо: каждый такой школьник решил по крайней мере ⅔ задач контрольной. Могло ли такое быть?

Изменится ли ответ, если везде в условии заменить ⅔ на   б) ¾;   в) 7/10?

Прислать комментарий     Решение

Задача 116390

Темы:   [ Задачи на движение ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 4-
Классы: 8,9

Автор: Шень А.Х.

По прямому шоссе со скоростью 60 км в час едет машина. Недалеко от шоссе стоит параллельный ему 100-метровый забор. Каждую секунду пассажир машины измеряет угол, под которым виден забор. Докажите, что сумма всех измеренных им углов меньше 1100°.

Прислать комментарий     Решение

Задача 66593

Темы:   [ Индукция (прочее) ]
[ Теория алгоритмов (прочее) ]
Сложность: 4
Классы: 9,10,11

Автор: Шень А.Х.

Есть бесконечная в одну сторону клетчатая полоска, клетки которой пронумерованы натуральными числами, и мешок с десятью камнями. В клетках полоски камней изначально нет. Можно делать следующее:

– перемещать камень из мешка в первую клетку полоски или обратно;

– если в клетке с номером $i$ лежит камень, то можно переложить камень из мешка в клетку с номером $i + 1$ или обратно.

Можно ли, действуя по этим правилам, положить камень в клетку с номером 1000?

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .