Страница:
<< 12 13 14 15 16 17
18 >> [Всего задач: 87]
|
|
Сложность: 5 Классы: 9,10,11
|
Докажите, что сумма двух нагелиан больше полупериметра треугольника.
|
|
Сложность: 5 Классы: 10,11
|
Сфера с центром в плоскости основания
ABC тетраэдра
SABC проходит
через вершины
A ,
B и
C и вторично пересекает ребра
SA ,
SB и
SC
в точках
A1
,
B1
и
C1
соответственно. Плоскости, касающиеся
сферы в точках
A1
,
B1
и
C1
, пересекаются в точке
O .
Докажите, что
O – центр сферы, описанной около тетраэдра
SA1
B1
C1
.
|
|
Сложность: 5 Классы: 9,10,11
|
Окружности
σ 1 и
σ 2 пересекаются в точках
A и
B . В точке
A к
σ 1 и
σ 2 проведены
соответственно касательные
l1 и
l2 .
Точки
T1 и
T2 выбраны соответственно на окружностях
σ 1 и
σ 2
так, что угловые меры дуг
T1A и
AT2 равны (величина дуги окружности считается по часовой стрелке).
Касательная
t1 в точке
T1 к окружности
σ 1 пересекает
l2 в точке
M1 .
Аналогично, касательная
t2 в точке
T2 к окружности
σ 2 пересекает
l1 в точке
M2 .
Докажите, что середины отрезков
M1M2 находятся на одной прямой,
не зависящей от положения точек
T1 ,
T2 .
|
|
Сложность: 5 Классы: 9,10,11
|
Каждую вершину выпуклого четырехугольника площади
S отразили симметрично относительно диагонали, не
содержащей эту вершину. Обозначим площадь получившегося четырехугольника через
S' . Докажите, что
<3
.
|
|
Сложность: 5 Классы: 10,11
|
Точка E – середина отрезка, соединяющего ортоцентр неравнобедренного остроугольного треугольника ABC с его вершиной A. Вписанная окружность этого треугольника касается сторон AB и AC в точках C' и B' соответственно. Докажите, что точка F, симметричная точке E относительно прямой B'C', лежит на прямой, проходящей через центры вписанной и описанной окружностей треугольника ABC.
Страница:
<< 12 13 14 15 16 17
18 >> [Всего задач: 87]