Страница: 1 [Всего задач: 3]
|
|
Сложность: 4 Классы: 8,9,10
|
Вокруг треугольника ABC с острым углом C описана окружность. На дуге AB, не содержащей точку C, выбрана точка D. Точка D' симметрична точке D относительно прямой AB. Прямые AD' и BD' пересекают стороны BC и AC в точках E и F. Пусть точка C движется по своей дуге AB. Докажите, что центр описанной окружности треугольника CEF движется по прямой.
Дан треугольник ABC. Точка P лежит на описанной окружности треугольника ABH, где H – ортоцентр треугольника ABC. Прямые AP, BP пересекают противоположные стороны треугольника в точках A', B'. Найдите геометрическое место середин отрезков A'B'.
|
|
Сложность: 5 Классы: 10,11
|
Окружности α, β, γ касаются друг друга внешним образом и касаются изнутри окружности Ω в точках A1, B1, C1 соответственно. Общая внутренняя касательная к α и β пересекает не содержащую C1 дугу A1B1 в точке C2. Точки A2, B2 определяются аналогично. Докажите, что прямые A1A2, B1B2, C1C2 пересекаются в одной точке.
Страница: 1 [Всего задач: 3]