Страница: 1 [Всего задач: 2]
|
|
Сложность: 4 Классы: 8,9,10
|
Вокруг треугольника ABC с острым углом C описана окружность. На дуге AB, не содержащей точку C, выбрана точка D. Точка D' симметрична точке D относительно прямой AB. Прямые AD' и BD' пересекают стороны BC и AC в точках E и F. Пусть точка C движется по своей дуге AB. Докажите, что центр описанной окружности треугольника CEF движется по прямой.
Дан треугольник ABC. Точка P лежит на описанной окружности треугольника ABH, где H – ортоцентр треугольника ABC. Прямые AP, BP пересекают противоположные стороны треугольника в точках A', B'. Найдите геометрическое место середин отрезков A'B'.
Страница: 1 [Всего задач: 2]