Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Акопян А.В.

Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Какое наименьшее число клеток надо отметить на доске 15×15 так, чтобы слон с любой клетки доски бил не менее двух отмеченных клеток? (Слон бьёт и ту клетку, где стоит.)

Вниз   Решение


По краю многоугольного стола ползут два муравья. Все стороны стола длиннее 1 м, а расстояние между муравьями всегда ровно 10 см. Сначала оба муравья находятся на одной из сторон стола.
  a) Пусть стол выпуклый. Всегда ли муравьи смогут проползти по краю стола так, чтобы в каждой точке края побывал каждый из муравьев?
  б) Пусть стол не обязательно выпуклый. Всегда ли муравьи смогут проползти по краю стола так, чтобы на краю не осталось точек, в которых не побывал ни один из муравьев?

ВверхВниз   Решение


На циферблате правильно идущих часов барона Мюнхгаузена есть только часовая, минутная и секундная стрелки, а все цифры и деления стёрты. Барон утверждает, что может определять время по этим часам, поскольку, по его наблюдению, на них в течение дня (с 8.00 до 19.59) не повторяется два раза одно и то же расположение стрелок. Верно ли наблюдение барона? (Стрелки имеют различную длину, движутся равномерно.)

ВверхВниз   Решение


Число x таково, что среди четырёх чисел     ровно одно не является целым.
Найдите все такие x.

ВверхВниз   Решение


Равносторонний треугольник ABC вписан в окружность Ω и описан вокруг окружности ω. На сторонах AC и AB выбраны точки P и Q соответственно так, что отрезок PQ касается ω. Окружность Ωb с центром P проходит через вершину B, а окружность Ωc с центром Q – через C. Докажите, что окружности Ω, Ωb и Ωc имеют общую точку.

ВверхВниз   Решение


Звенья AB, BC и CD ломаной ABCD равны по длине и касаются некоторой окружности.
Доказать, что точка K касания этой окружности со звеном BC, её центр O и точка пересечения прямых AC и BD лежат на одной прямой.

ВверхВниз   Решение


а) У Тани есть 4 одинаковые с виду гири, массы которых равны 1000, 1002, 1004 и 1005 г (неизвестно, где какая), и чашечные весы (показывающие, какая из двух чаш перевесила или что имеет место равенство). Может ли Таня за 4 взвешивания гарантированно определить, где какая гиря? (Следующее взвешивание выбирается по результатам прошедших.)

б) Тот же вопрос, если у весов левая чашка на 1 г легче правой, так что весы показывают равенство, если масса на левой чашке на 1 г больше, чем на правой.

ВверхВниз   Решение


В треугольнике ABC взяли точку M так, что что радиусы описанных окружностей треугольников AMC, BMC и BMA не меньше радиуса описанной окружности треугольника ABC. Докажите, что все четыре радиуса равны.

ВверхВниз   Решение


а) Мальвина разбила каждую грань куба 2×2×2 на единичные квадраты и велела Буратино в некоторых квадратах написать крестики, а в остальных нолики так, чтобы каждый квадрат граничил по сторонам с двумя крестиками и двумя ноликами. На рисунке показано, как Буратино выполнил задание (видно только три грани). Докажите, что Буратино ошибся.

б) Помогите Буратино выполнить задание правильно. Достаточно описать хотя бы одну верную расстановку.

ВверхВниз   Решение


а) На каждом из полей верхней и нижней горизонтали шахматной доски 8×8 стоит по фишке: внизу – белые, вверху – чёрные. За один ход разрешается передвинуть любую фишку на соседнюю свободную клетку по вертикали или горизонтали. За какое наименьшее число ходов можно добиться того, чтобы все чёрные фишки стояли внизу, а белые – вверху?

б) Тот же вопрос для доски 7×7.

ВверхВниз   Решение


Сто натуральных чисел образуют возрастающую арифметическую прогрессию. Возможно ли, что каждые два из этих чисел взаимно просты?

ВверхВниз   Решение


Дана прямая l в пространстве и точка A, не лежащая на ней. Для каждой прямой l', проходящей через A, построим общий перпендикуляр XY (Y лежит на l') к прямым l и l'. Найдите ГМТ точек Y.

Вверх   Решение

Все задачи автора

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 51]      



Задача 65025

Темы:   [ Перпендикулярные прямые в пространстве ]
[ Теорема о трех перпендикулярах ]
[ Перпендикулярность прямой и плоскости (прочее) ]
Сложность: 4-
Классы: 10,11

Дана прямая l в пространстве и точка A, не лежащая на ней. Для каждой прямой l', проходящей через A, построим общий перпендикуляр XY (Y лежит на l') к прямым l и l'. Найдите ГМТ точек Y.

Прислать комментарий     Решение

Задача 65826

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Соображения непрерывности ]
Сложность: 4-
Классы: 8,9,10,11

По краю многоугольного стола ползут два муравья. Все стороны стола длиннее 1 м, а расстояние между муравьями всегда ровно 10 см. Сначала оба муравья находятся на одной из сторон стола.
  a) Пусть стол выпуклый. Всегда ли муравьи смогут проползти по краю стола так, чтобы в каждой точке края побывал каждый из муравьев?
  б) Пусть стол не обязательно выпуклый. Всегда ли муравьи смогут проползти по краю стола так, чтобы на краю не осталось точек, в которых не побывал ни один из муравьев?

Прислать комментарий     Решение

Задача 66015

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вписанные и описанные окружности ]
[ Пересекающиеся окружности ]
[ Две касательные, проведенные из одной точки ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4-
Классы: 9,10,11

Равносторонний треугольник ABC вписан в окружность Ω и описан вокруг окружности ω. На сторонах AC и AB выбраны точки P и Q соответственно так, что отрезок PQ касается ω. Окружность Ωb с центром P проходит через вершину B, а окружность Ωc с центром Q – через C. Докажите, что окружности Ω, Ωb и Ωc имеют общую точку.

Прислать комментарий     Решение

Задача 108128

Темы:   [ Ортоцентр и ортотреугольник ]
[ Признаки и свойства параллелограмма ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 4-
Классы: 8,9

В остроугольном треугольнике ABC проведены высоты AHA, BHB и CHC.
Докажите, что треугольник с вершинами в ортоцентрах треугольников AHBHC, BHAHC и CHAHB равен треугольнику HAHBHC.

Прислать комментарий     Решение

Задача 115902

Темы:   [ Две пары подобных треугольников ]
[ Симметрия помогает решить задачу ]
[ Длины сторон, высот, медиан и биссектрис ]
Сложность: 4-
Классы: 8,9,10,11

В треугольнике ABC  AB – BC = .  Пусть M – середина стороны AC, а BN – биссектриса.  Докажите, что  ∠BMC + ∠BNC = 90°.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 51]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .